CONQUER_RVMR / train.py
Liangrj5
init
a638e43
import os
import time
import json
import pprint
import random
import numpy as np
from tqdm import tqdm, trange
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from config.config import BaseOptions
from model.conquer import CONQUER
from data_loader.second_stage_start_end_dataset import StartEndDataset
from inference import eval_epoch
from optim.adamw import AdamW
from utils.basic_utils import TimeTracker, load_config, save_json, get_logger
from utils.model_utils import count_parameters, move_cuda, start_end_collate
def set_seed(seed, use_cuda=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed_all(seed)
def rm_key_from_odict(odict_obj, rm_suffix):
"""remove key entry from the OrderedDict"""
return OrderedDict([(k, v) for k, v in odict_obj.items() if rm_suffix not in k])
def build_optimizer(model, opts):
# Prepare optimizer
param_optimizer = [(n, p) for n, p in model.named_parameters()
if (n.startswith('encoder') or n.startswith('query_weight')) and p.requires_grad ]
param_top = [(n, p) for n, p in model.named_parameters()
if ( not n.startswith('encoder') and not n.startswith('query_weight')) and p.requires_grad]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_top
if not any(nd in n for nd in no_decay)],
'weight_decay': opts.wd},
{'params': [p for n, p in param_top
if any(nd in n for nd in no_decay)],
'weight_decay': 0.0},
{'params': [p for n, p in param_optimizer
if not any(nd in n for nd in no_decay)],
'lr': opts.lr_mul * opts.lr,
'weight_decay': opts.wd},
{'params': [p for n, p in param_optimizer
if any(nd in n for nd in no_decay)],
'lr': opts.lr_mul * opts.lr,
'weight_decay': 0.0}
]
# currently Adam only
optimizer = AdamW(optimizer_grouped_parameters,
lr=opts.lr)
return optimizer
def train(model, train_data, val_data, test_data, opt, logger):
# Prepare optimizer
if opt.device.type == "cuda":
model.to(opt.device)
logger.info("CUDA enabled.")
assert len(opt.device_ids) == 1
train_loader = DataLoader(train_data,
collate_fn=start_end_collate,
batch_size=opt.bsz,
num_workers=opt.num_workers,
shuffle=True,
pin_memory=True,
drop_last=True)
# Prepare optimizer
optimizer = build_optimizer(model, opt)
thresholds = [0.3, 0.5, 0.7]
topks = [10, 20, 40]
best_val_ndcg = 0
eval_step = len(train_loader) // opt.eval_num_per_epoch
time_tracker = TimeTracker()
for epoch_i in range(0, opt.n_epoch):
print(f"TRAIN EPOCH: {epoch_i}|{opt.n_epoch}")
num_training_examples = len(train_loader)
time_tracker.start("grab_data")
for batch_idx, batch in tqdm(enumerate(train_loader), desc=f"Training {epoch_i}|{opt.n_epoch}", total=num_training_examples):
global_step = epoch_i * num_training_examples + batch_idx
time_tracker.stop("grab_data")
time_tracker.start("to_device")
model.train()
model_inputs = move_cuda(batch["model_inputs"], opt.device)
time_tracker.stop("to_device")
time_tracker.start("forward")
optimizer.zero_grad()
loss, loss_dict = model(model_inputs)
time_tracker.stop("forward")
time_tracker.start("backward")
loss.backward()
if opt.grad_clip != -1:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
time_tracker.stop("backward")
time_tracker.start("grab_data")
if global_step % 10 == 0:
print(time_tracker.report())
time_tracker.reset_all()
for i in range(torch.cuda.device_count()):
print(f"Memory Allocated on GPU {i}: {torch.cuda.memory_allocated(i) / 1024**3:.2f} GB")
print(f"Memory Cached on GPU {i}: {torch.cuda.memory_reserved(i) / 1024**3:.2f} GB")
print("-------------------------")
###### ------------------- #############
### eval during training
if global_step % eval_step == 0 and global_step != 0:
model.eval()
val_performance, val_predictions = eval_epoch(model, val_data, opt, max_after_nms=40, iou_thds=thresholds, topks=topks)
test_performance, test_predictions = eval_epoch(model, test_data, opt, max_after_nms=40, iou_thds=thresholds, topks=topks)
logger.info(f"EPOCH: {epoch_i}")
line1 = ""
line2 = "VAL: "
line3 = "TEST: "
for K, vs in val_performance.items():
for T, v in vs.items():
line1 += f"NDCG@{K}, IoU={T}\t"
line2 += f" {v:.6f}"
for K, vs in test_performance.items():
for T, v in vs.items():
line3 += f" {v:.6f}"
logger.info(line1)
logger.info(line2)
logger.info(line3)
anchor_ndcg = val_performance[20][0.5]
if anchor_ndcg > best_val_ndcg:
print("~"*40)
save_json(val_predictions, os.path.join(opt.results_dir, "best_val_predictions.json"))
save_json(test_predictions, os.path.join(opt.results_dir, "best_test_predictions.json"))
best_val_ndcg = anchor_ndcg
logger.info("BEST " + line2)
logger.info("BEST " + line3)
checkpoint = {"model": model.state_dict(), "model_cfg": model.config, "epoch": epoch_i}
torch.save(checkpoint, opt.ckpt_filepath)
logger.info("save checkpoint: {}".format(opt.ckpt_filepath))
print("~"*40)
logger.info("")
def start_training():
opt = BaseOptions().parse()
logger = get_logger(opt.results_dir, opt.model_name +"_"+ opt.exp_id)
set_seed(opt.seed)
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Metrics] {eval_metrics_str}\n"
data_config = load_config(opt.dataset_config)
train_dataset = StartEndDataset(
config=data_config,
data_path = data_config.train_data_path,
vr_rank_path = data_config.train_first_VR_ranklist_path,
mode="train",
data_ratio=opt.data_ratio,
neg_video_num=opt.neg_video_num,
use_extend_pool=opt.use_extend_pool,
)
val_dataset = StartEndDataset(
config = data_config,
data_path = data_config.val_data_path,
vr_rank_path = data_config.val_first_VR_ranklist_path_hero,
mode="val",
max_ctx_len=opt.max_ctx_len,
max_desc_len=opt.max_desc_len,
clip_length=opt.clip_length,
ctx_mode = opt.ctx_mode,
data_ratio = opt.data_ratio,
is_eval = True,
inference_top_k = opt.max_vcmr_video,
)
test_dataset = StartEndDataset(
config = data_config,
data_path = data_config.test_data_path,
vr_rank_path = data_config.test_first_VR_ranklist_path_hero,
mode="val",
max_ctx_len=opt.max_ctx_len,
max_desc_len=opt.max_desc_len,
clip_length=opt.clip_length,
ctx_mode = opt.ctx_mode,
data_ratio = opt.data_ratio,
is_eval = True,
inference_top_k = opt.max_vcmr_video,
)
model_config = load_config(opt.model_config)
logger.info("model_config {}".format(pprint.pformat(model_config,indent=4)))
model = CONQUER(
model_config,
visual_dim = opt.visual_dim,
text_dim =opt.text_dim,
query_dim = opt.query_dim,
hidden_dim = opt.hidden_dim,
video_len= opt.max_ctx_len,
ctx_mode = opt.ctx_mode,
lw_video_ce = opt.lw_video_ce, # video cross-entropy loss weight
lw_st_ed = opt.lw_st_ed, # moment cross-entropy loss weight
similarity_measure=opt.similarity_measure,
use_debug = opt.debug,
no_output_moe_weight = opt.no_output_moe_weight)
count_parameters(model)
logger.info("Start Training...")
train(model, train_dataset, val_dataset, test_dataset, opt, logger)
if __name__ == '__main__':
start_training()