Lifehouse's picture
End of training
b095896 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - recall
  - precision
  - accuracy
model-index:
  - name: distilbert-sql-timeout-classifier-with-trained-tokenizer
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - name: Recall
            type: recall
            value: 0.7370441458733206
          - name: Precision
            type: precision
            value: 0.15262321144674085
          - name: Accuracy
            type: accuracy
            value: 0.8761327655857626

distilbert-sql-timeout-classifier-with-trained-tokenizer

This model is a fine-tuned version of distilbert-base-uncased on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4898
  • Recall: 0.7370
  • Precision: 0.1526
  • Affect Rate: 0.1164
  • Accuracy: 0.8761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Recall Precision Affect Rate Accuracy
0.5018 1.0 1946 0.3744 0.6929 0.1758 0.0924 0.8988
0.3196 2.0 3892 0.4938 0.7390 0.1294 0.1414 0.8512
0.2219 3.0 5838 0.4898 0.7370 0.1526 0.1164 0.8761

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2