Fixing sizing mismatch issue.
I was running into errors like these:
!!! Exception during processing !!! The expanded size of the tensor (26) must match the existing size (27) at non-singleton dimension 3. Target sizes: [2, 128, 35, 26]. Tensor sizes: [2, 128, 36, 27]
File "*\ComfyUI\comfy\ldm\lightricks\model.py", line 437, in forward
x[:, :, 0] = guiding_latent[:, :, 0]
~^^^^^^^^^
RuntimeError: The expanded size of the tensor (26) must match the existing size (27) at non-singleton dimension 3. Target sizes: [2, 128, 35, 26]. Tensor sizes: [2, 128, 36, 27]
I modified two files to fix the issue.
I updated *\ComfyUI\comfy_extras\nodes_lt.py
And I also updated *\ComfyUI\comfy\ldm\lightricks\model.py
code for model.py:
import torch
from torch import nn
import comfy.ldm.modules.attention
from comfy.ldm.genmo.joint_model.layers import RMSNorm
import comfy.ldm.common_dit
from einops import rearrange
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
Create sinusoidal timestep embeddings.
Args:
timesteps (torch.Tensor): A 1-D Tensor of N indices, one per batch element. These may be fractional.
embedding_dim (int): The dimension of the output.
flip_sin_to_cos (bool): Whether to flip the sine and cosine embeddings.
downscale_freq_shift (float): Controls the delta between frequencies between dimensions.
scale (float): Scaling factor applied to the embeddings.
max_period (int): Controls the maximum frequency of the embeddings.
Returns:
torch.Tensor: An [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# Scale embeddings
emb = scale * emb
# Concatenate sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# Flip sine and cosine embeddings if required
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# Zero pad if embedding_dim is odd
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class TimestepEmbedding(nn.Module):
def init(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
dtype=None, device=None, operations=None,
):
super().init()
self.linear_1 = operations.Linear(in_channels, time_embed_dim, sample_proj_bias, dtype=dtype, device=device)
if cond_proj_dim is not None:
self.cond_proj = operations.Linear(cond_proj_dim, in_channels, bias=False, dtype=dtype, device=device)
else:
self.cond_proj = None
self.act = nn.SiLU()
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)
if post_act_fn is None:
self.post_act = None
# else:
# self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class Timesteps(nn.Module):
def init(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
super().init()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
)
return t_emb
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
"""
For PixArt-Alpha.
Reference:
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
return timesteps_emb
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
)
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)
def forward(
self,
timestep: torch.Tensor,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
batch_size: Optional[int] = None,
hidden_dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# No modulation happening here.
added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None}
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class GELU_approx(nn.Module):
def init(self, dim_in, dim_out, dtype=None, device=None, operations=None):
super().init()
self.proj = operations.Linear(dim_in, dim_out, dtype=dtype, device=device)
def forward(self, x):
return torch.nn.functional.gelu(self.proj(x), approximate="tanh")
class FeedForward(nn.Module):
def init(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
super().init()
inner_dim = int(dim * mult)
project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
return self.net(x)
def apply_rotary_emb(input_tensor, freqs_cis): # TODO: remove duplicate funcs and pick the best/fastest one
cos_freqs = freqs_cis[0]
sin_freqs = freqs_cis[1]
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
t1, t2 = t_dup.unbind(dim=-1)
t_dup = torch.stack((-t2, t1), dim=-1)
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
return out
class CrossAttention(nn.Module):
def init(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
super().init()
inner_dim = dim_head * heads
context_dim = query_dim if context_dim is None else context_dim
self.attn_precision = attn_precision
self.heads = heads
self.dim_head = dim_head
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, mask=None, pe=None):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
v = self.to_v(context)
q = self.q_norm(q)
k = self.k_norm(k)
if pe is not None:
q = apply_rotary_emb(q, pe)
k = apply_rotary_emb(k, pe)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
else:
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def init(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
super().init()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], x.shape[1], self.scale_shift_table.shape[0], -1)
).unbind(dim=2)
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
x += self.attn2(x, context=context, mask=attention_mask)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
return x
def get_fractional_positions(indices_grid, max_pos):
fractional_positions = torch.stack(
[
indices_grid[:, i] / max_pos[i]
for i in range(3)
],
dim=-1,
)
return fractional_positions
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
dtype = torch.float32 # self.dtype
fractional_positions = get_fractional_positions(indices_grid, max_pos)
start = 1
end = theta
device = fractional_positions.device
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
dim // 6,
device=device,
dtype=dtype,
)
)
indices = indices.to(dtype=dtype)
indices = indices * math.pi / 2
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
class LTXVModel(torch.nn.Module):
def init(self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
caption_channels=4096,
num_layers=28,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
dtype=None, device=None, operations=None, **kwargs):
super().init()
self.dtype = dtype
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
)
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
dtype=dtype, device=device, operations=operations
)
for d in range(num_layers)
]
)
self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate, guiding_latent=None, transformer_options={}, **kwargs):
# Debug: Print original input shape
print(f"Original x shape: {x.shape}") # Expected: [batch, channels, frames, height, width]
# Calculate padding to ensure dimensions are divisible by patch size
patch_size = self.patchifier.patch_size
print(f"Patch size: {patch_size}")
# Handle patch_size as a tuple (frames, height, width)
if isinstance(patch_size, tuple):
if len(patch_size) != 3:
raise ValueError(f"Expected patch_size to be a tuple of length 3, but got length {len(patch_size)}")
patch_size_frames, patch_size_height, patch_size_width = patch_size
else:
patch_size_frames = patch_size_height = patch_size_width = patch_size
# Compute padding for each dimension
padding_frames = (patch_size_frames - (x.shape[2] % patch_size_frames)) % patch_size_frames
padding_height = (patch_size_height - (x.shape[3] % patch_size_height)) % patch_size_height
padding_width = (patch_size_width - (x.shape[4] % patch_size_width)) % patch_size_width
if padding_frames != 0 or padding_height != 0 or padding_width != 0:
# Calculate padding in the order (W_left, W_right, H_top, H_bottom, F_front, F_back)
padding = [
padding_width // 2, padding_width - (padding_width // 2),
padding_height // 2, padding_height - (padding_height // 2),
padding_frames // 2, padding_frames - (padding_frames // 2)
]
x = torch.nn.functional.pad(x, padding)
print(f"x shape after padding: {x.shape}")
indices_grid = self.patchifier.get_grid(
orig_num_frames=x.shape[2],
orig_height=x.shape[3],
orig_width=x.shape[4],
batch_size=x.shape[0],
scale_grid=(1, 32, 32), # Changed from ((1 / frame_rate) * 8, 32, 32)
device=x.device,
)
print(f"indices_grid shape: {indices_grid.shape}")
if guiding_latent is not None:
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
ts *= input_ts
ts[:, :, 0] = 0.0
timestep = self.patchifier.patchify(ts)
print(f"Timestep shape after patchify: {timestep.shape}")
input_x = x.clone()
# Debug: Print shapes before assignment
print(f"x shape before assignment: {x[:, :, 0].shape}") # [batch, channels, height, width]
print(f"guiding_latent shape: {guiding_latent.shape}") # Should match [batch, channels, height, width]
# Ensure guiding_latent has the same shape as x[:, :, 0] before assignment
if guiding_latent.shape != x[:, :, 0].shape:
try:
# Check if guiding_latent is 4D or 5D
if guiding_latent.dim() == 4:
# Add a frames dimension
guiding_latent = guiding_latent.unsqueeze(2) # [N, C, 1, H, W]
print(f"guiding_latent shape after unsqueeze: {guiding_latent.shape}")
elif guiding_latent.dim() != 5:
raise ValueError(f"Expected guiding_latent to have 4 or 5 dimensions, but got {guiding_latent.dim()}")
# Resize guiding_latent spatially to match x
guiding_latent = torch.nn.functional.interpolate(
guiding_latent,
size=(1, x.shape[3], x.shape[4]), # (D, H, W)
mode='trilinear', # Use 'trilinear' for 5D tensors
align_corners=False
)
print(f"Resized guiding_latent shape after interpolate: {guiding_latent.shape}")
except Exception as e:
print(f"Interpolation failed: {e}")
raise
# After interpolation, check again
if guiding_latent.shape[3] != x.shape[3] or guiding_latent.shape[4] != x.shape[4]:
# Determine target height and width
target_height, target_width = x.shape[3], x.shape[4]
# Current height and width
current_height, current_width = guiding_latent.shape[3], guiding_latent.shape[4]
# Calculate necessary padding or cropping
pad_height = target_height - current_height
pad_width = target_width - current_width
# Initialize padding parameters
# For trilinear, padding is (W_left, W_right, H_top, H_bottom, D_front, D_back)
padding = [0, 0, 0, 0, 0, 0]
# Apply padding or cropping for height
if pad_height > 0:
padding[2] = pad_height // 2
padding[3] = pad_height - padding[2]
guiding_latent = torch.nn.functional.pad(guiding_latent, padding, mode='constant', value=0)
print(f"Padded guiding_latent height to: {guiding_latent.shape[3]}")
elif pad_height < 0:
guiding_latent = guiding_latent[:, :, :, :target_height, :]
print(f"Cropped guiding_latent height to: {guiding_latent.shape[3]}")
# Apply padding or cropping for width
if pad_width > 0:
padding = [pad_width // 2, pad_width - (pad_width // 2), 0, 0, 0, 0]
guiding_latent = torch.nn.functional.pad(guiding_latent, padding, mode='constant', value=0)
print(f"Padded guiding_latent width to: {guiding_latent.shape[4]}")
elif pad_width < 0:
guiding_latent = guiding_latent[:, :, :, :, :target_width]
print(f"Cropped guiding_latent width to: {guiding_latent.shape[4]}")
# Final shape check
if guiding_latent.shape[3] != target_height or guiding_latent.shape[4] != target_width:
raise RuntimeError(f"Final guiding_latent shape {guiding_latent.shape} does not match x shape [N, C, H, W] [{x.shape}]")
# If patch_size_frames is 1, remove the frames dimension
if patch_size_frames == 1 and guiding_latent.shape[2] == 1:
guiding_latent = guiding_latent.squeeze(2) # [N, C, H, W]
print(f"guiding_latent shape after squeeze: {guiding_latent.shape}")
# Final assignment
# Ensure shapes match before assignment
if guiding_latent.shape != x[:, :, 0].shape:
raise RuntimeError(f"Final guiding_latent shape {guiding_latent.shape} does not match x[:, :, 0] shape {x[:, :, 0].shape}")
x[:, :, 0] = guiding_latent
print(f"x shape after assignment: {x[:, :, 0].shape}")
orig_shape = list(x.shape)
# Patchify the input
x = self.patchifier.patchify(x)
print(f"x shape after patchify: {x.shape}") # Expected: [batch, channels, frames, height, width] if patch_size=(1,1,1)
x = self.patchify_proj(x)
print(f"x shape after patchify_proj: {x.shape}")
timestep = timestep * 1000.0
print(f"Timestep after scaling: {timestep.shape}")
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)
print(f"Positional encoding shapes: cos_freq={pe[0].shape}, sin_freq={pe[1].shape}")
batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=x.dtype,
)
print(f"embedded_timestep shape: {embedded_timestep.shape}")
# Reshape timestep
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(
batch_size, -1, embedded_timestep.shape[-1]
)
print(f"Timestep reshaped: {timestep.shape}, embedded_timestep reshaped: {embedded_timestep.shape}")
# 2. Blocks
if self.caption_projection is not None:
batch_size = x.shape[0]
context = self.caption_projection(context)
context = context.view(
batch_size, -1, x.shape[-1]
)
print(f"context shape after projection: {context.shape}")
blocks_replace = transformer_options.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(
x,
context=context,
attention_mask=attention_mask,
timestep=timestep,
pe=pe
)
print(f"x shape after transformer block {i}: {x.shape}")
# 3. Output
scale_shift_values = (
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
)
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
print(f"scale_shift_values shape: {scale_shift_values.shape}")
x = self.norm_out(x)
print(f"x shape after norm_out: {x.shape}")
# Modulation
x = x * (1 + scale) + shift
print(f"x shape after modulation: {x.shape}")
x = self.proj_out(x)
print(f"x shape after proj_out: {x.shape}")
# Unpatchify the latents
x = self.patchifier.unpatchify(
latents=x,
out_channels=self.out_channels, # Added this line
output_height=orig_shape[3],
output_width=orig_shape[4],
output_num_frames=orig_shape[2]
)
print(f"x shape after unpatchify: {x.shape}")
if guiding_latent is not None:
# Ensure shapes match before final assignment
if (input_x[:, :, 0].shape != guiding_latent.shape):
raise RuntimeError(f"Final guiding latent shape {guiding_latent.shape} does not match input_x[:, :, 0] shape {input_x[:, :, 0].shape}")
x[:, :, 0] = (input_x[:, :, 0] - guiding_latent) / input_ts[:, :, 0]
print(f"x shape after final assignment with guiding_latent: {x.shape}")
# Final shape check
print(f"Final x shape: {x.shape}")
return x
HERE'S THE CODE for nodes_It.py:
import nodes
import node_helpers
import torch
import comfy.model_management
import comfy.model_sampling
import math
class EmptyLTXVLatentVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/video/ltxv"
def generate(self, width, height, length, batch_size=1):
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
return ({"samples": latent}, )
class LTXVImgToVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE",),
"image": ("IMAGE",),
"width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}),
"length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
CATEGORY = "conditioning/video_models"
FUNCTION = "generate"
def generate(self, positive, negative, image, vae, width, height, length, batch_size):
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels)
positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t})
negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t})
latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device())
# Ensure the dimensions match before assignment
min_length = min(latent.shape[2], t.shape[2])
min_height = min(latent.shape[3], t.shape[3])
min_width = min(latent.shape[4], t.shape[4])
latent[:, :, :min_length, :min_height, :min_width] = t[:, :, :min_length, :min_height, :min_width]
return (positive, negative, {"samples": latent}, )
class LTXVConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
RETURN_NAMES = ("positive", "negative")
FUNCTION = "append"
CATEGORY = "conditioning/video_models"
def append(self, positive, negative, frame_rate):
positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate})
negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate})
return (positive, negative)
class ModelSamplingLTXV:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}),
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}),
},
"optional": {"latent": ("LATENT",), }
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, max_shift, base_shift, latent=None):
m = model.clone()
if latent is None:
tokens = 4096
else:
tokens = math.prod(latent["samples"].shape[2:])
x1 = 1024
x2 = 4096
mm = (max_shift - base_shift) / (x2 - x1)
b = base_shift - mm * x1
shift = (tokens) * mm + b
sampling_base = comfy.model_sampling.ModelSamplingFlux
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class LTXVScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}),
"base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}),
"stretch": ("BOOLEAN", {
"default": True,
"tooltip": "Stretch the sigmas to be in the range [terminal, 1]."
}),
"terminal": (
"FLOAT",
{
"default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01,
"tooltip": "The terminal value of the sigmas after stretching."
},
),
},
"optional": {"latent": ("LATENT",), }
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None):
if latent is None:
tokens = 4096
else:
tokens = math.prod(latent["samples"].shape[2:])
sigmas = torch.linspace(1.0, 0.0, steps + 1)
x1 = 1024
x2 = 4096
mm = (max_shift - base_shift) / (x2 - x1)
b = base_shift - mm * x1
sigma_shift = (tokens) * mm + b
power = 1
sigmas = torch.where(
sigmas != 0,
math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power),
0,
)
# Stretch sigmas so that its final value matches the given terminal value.
if stretch:
non_zero_mask = sigmas != 0
non_zero_sigmas = sigmas[non_zero_mask]
one_minus_z = 1.0 - non_zero_sigmas
scale_factor = one_minus_z[-1] / (1.0 - terminal)
stretched = 1.0 - (one_minus_z / scale_factor)
sigmas[non_zero_mask] = stretched
return (sigmas,)
NODE_CLASS_MAPPINGS = {
"EmptyLTXVLatentVideo": EmptyLTXVLatentVideo,
"LTXVImgToVideo": LTXVImgToVideo,
"ModelSamplingLTXV": ModelSamplingLTXV,
"LTXVConditioning": LTXVConditioning,
"LTXVScheduler": LTXVScheduler,
}
Please feel free to review, use, and modify my code for any future updates to prevent this from reoccurring.