File size: 4,661 Bytes
3ee570c
 
 
cea619b
 
 
 
 
3ee570c
 
 
 
 
 
 
 
 
 
 
cea619b
5474016
 
 
 
 
3ee570c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24343b
3ee570c
cea619b
 
f24343b
 
5474016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea619b
 
3ee570c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-ner-invoiceSenderRecipient-all-inv-26-12

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0245
- Precision: 0.8602
- Recall: 0.9015
- F1: 0.8804
- Accuracy: 0.9921

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0157        | 0.06  | 500   | 0.0286          | 0.8569    | 0.8605 | 0.8587 | 0.9908   |
| 0.0156        | 0.11  | 1000  | 0.0287          | 0.8340    | 0.8940 | 0.8630 | 0.9910   |
| 0.0141        | 0.17  | 1500  | 0.0296          | 0.8368    | 0.8853 | 0.8604 | 0.9908   |
| 0.014         | 0.23  | 2000  | 0.0296          | 0.8356    | 0.8915 | 0.8627 | 0.9910   |
| 0.0144        | 0.28  | 2500  | 0.0306          | 0.8310    | 0.8896 | 0.8593 | 0.9906   |
| 0.0136        | 0.34  | 3000  | 0.0290          | 0.8384    | 0.8842 | 0.8607 | 0.9910   |
| 0.0134        | 0.4   | 3500  | 0.0306          | 0.8514    | 0.8779 | 0.8645 | 0.9912   |
| 0.0138        | 0.46  | 4000  | 0.0307          | 0.8475    | 0.8790 | 0.8630 | 0.9910   |
| 0.0139        | 0.51  | 4500  | 0.0301          | 0.8208    | 0.9002 | 0.8587 | 0.9908   |
| 0.014         | 0.57  | 5000  | 0.0320          | 0.8307    | 0.8981 | 0.8631 | 0.9909   |
| 0.0155        | 0.63  | 5500  | 0.0307          | 0.8329    | 0.8992 | 0.8648 | 0.9909   |
| 0.0154        | 0.68  | 6000  | 0.0268          | 0.8403    | 0.8971 | 0.8677 | 0.9913   |
| 0.0178        | 0.74  | 6500  | 0.0269          | 0.8548    | 0.8869 | 0.8705 | 0.9916   |
| 0.0177        | 0.8   | 7000  | 0.0268          | 0.8552    | 0.8904 | 0.8725 | 0.9917   |
| 0.0178        | 0.85  | 7500  | 0.0267          | 0.8498    | 0.8972 | 0.8729 | 0.9917   |
| 0.017         | 0.91  | 8000  | 0.0259          | 0.8517    | 0.8969 | 0.8737 | 0.9917   |
| 0.0176        | 0.97  | 8500  | 0.0249          | 0.8523    | 0.8921 | 0.8717 | 0.9916   |
| 0.0157        | 1.02  | 9000  | 0.0274          | 0.8535    | 0.8990 | 0.8757 | 0.9918   |
| 0.0134        | 1.08  | 9500  | 0.0293          | 0.8375    | 0.9060 | 0.8704 | 0.9913   |
| 0.0132        | 1.14  | 10000 | 0.0278          | 0.8648    | 0.8864 | 0.8755 | 0.9919   |
| 0.0135        | 1.19  | 10500 | 0.0273          | 0.8540    | 0.8958 | 0.8744 | 0.9917   |
| 0.0133        | 1.25  | 11000 | 0.0277          | 0.8442    | 0.9034 | 0.8728 | 0.9917   |
| 0.0138        | 1.31  | 11500 | 0.0276          | 0.8484    | 0.9035 | 0.8751 | 0.9917   |
| 0.0141        | 1.37  | 12000 | 0.0274          | 0.8501    | 0.9016 | 0.8751 | 0.9918   |
| 0.0137        | 1.42  | 12500 | 0.0274          | 0.8529    | 0.9010 | 0.8763 | 0.9918   |
| 0.014         | 1.48  | 13000 | 0.0269          | 0.8509    | 0.9022 | 0.8758 | 0.9919   |
| 0.0141        | 1.54  | 13500 | 0.0260          | 0.8653    | 0.8926 | 0.8787 | 0.9920   |
| 0.0149        | 1.59  | 14000 | 0.0258          | 0.8521    | 0.9048 | 0.8777 | 0.9919   |
| 0.0149        | 1.65  | 14500 | 0.0257          | 0.8607    | 0.8980 | 0.8790 | 0.9921   |
| 0.0152        | 1.71  | 15000 | 0.0257          | 0.8596    | 0.9001 | 0.8794 | 0.9920   |
| 0.015         | 1.76  | 15500 | 0.0257          | 0.8556    | 0.9032 | 0.8788 | 0.9920   |
| 0.0157        | 1.82  | 16000 | 0.0248          | 0.8620    | 0.8993 | 0.8802 | 0.9922   |
| 0.0158        | 1.88  | 16500 | 0.0251          | 0.8573    | 0.9036 | 0.8798 | 0.9921   |
| 0.0163        | 1.93  | 17000 | 0.0248          | 0.8579    | 0.9034 | 0.8800 | 0.9921   |
| 0.017         | 1.99  | 17500 | 0.0245          | 0.8602    | 0.9015 | 0.8804 | 0.9921   |


### Framework versions

- Transformers 4.15.0
- Pytorch 1.10.0
- Datasets 2.3.2
- Tokenizers 0.10.3