distilbert-base-uncased-ner-invoiceSenderRecipient_clean_inv_27_02
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0160
- Precision: 0.9514
- Recall: 0.9593
- F1: 0.9553
- Accuracy: 0.9953
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0078 | 0.09 | 500 | 0.0213 | 0.9269 | 0.9514 | 0.9390 | 0.9937 |
0.008 | 0.17 | 1000 | 0.0230 | 0.9246 | 0.9516 | 0.9379 | 0.9935 |
0.007 | 0.26 | 1500 | 0.0234 | 0.9400 | 0.9478 | 0.9439 | 0.9942 |
0.0065 | 0.34 | 2000 | 0.0238 | 0.9280 | 0.9537 | 0.9406 | 0.9936 |
0.0071 | 0.43 | 2500 | 0.0221 | 0.9291 | 0.9570 | 0.9428 | 0.9939 |
0.007 | 0.52 | 3000 | 0.0210 | 0.9393 | 0.9457 | 0.9425 | 0.9941 |
0.0072 | 0.6 | 3500 | 0.0197 | 0.9448 | 0.9490 | 0.9469 | 0.9945 |
0.0071 | 0.69 | 4000 | 0.0196 | 0.9400 | 0.9555 | 0.9477 | 0.9945 |
0.0109 | 0.77 | 4500 | 0.0178 | 0.9458 | 0.9499 | 0.9478 | 0.9946 |
0.01 | 0.86 | 5000 | 0.0191 | 0.9443 | 0.9489 | 0.9466 | 0.9945 |
0.0103 | 0.95 | 5500 | 0.0181 | 0.9466 | 0.9530 | 0.9498 | 0.9947 |
0.0081 | 1.03 | 6000 | 0.0191 | 0.9448 | 0.9578 | 0.9512 | 0.9948 |
0.0102 | 1.12 | 6500 | 0.0171 | 0.9454 | 0.9550 | 0.9502 | 0.9948 |
0.01 | 1.21 | 7000 | 0.0178 | 0.9460 | 0.9584 | 0.9521 | 0.9949 |
0.0107 | 1.29 | 7500 | 0.0164 | 0.9498 | 0.9552 | 0.9525 | 0.9950 |
0.0107 | 1.38 | 8000 | 0.0166 | 0.9461 | 0.9596 | 0.9528 | 0.9950 |
0.0095 | 1.46 | 8500 | 0.0170 | 0.9402 | 0.9626 | 0.9513 | 0.9949 |
0.0097 | 1.55 | 9000 | 0.0161 | 0.9455 | 0.9595 | 0.9524 | 0.9950 |
0.01 | 1.64 | 9500 | 0.0159 | 0.9502 | 0.9583 | 0.9542 | 0.9952 |
0.01 | 1.72 | 10000 | 0.0160 | 0.9488 | 0.9598 | 0.9543 | 0.9952 |
0.0095 | 1.81 | 10500 | 0.0157 | 0.9502 | 0.9602 | 0.9552 | 0.9953 |
0.0087 | 1.89 | 11000 | 0.0160 | 0.9514 | 0.9593 | 0.9553 | 0.9953 |
0.0089 | 1.98 | 11500 | 0.0160 | 0.9502 | 0.9608 | 0.9555 | 0.9953 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.13.1
- Datasets 2.3.2
- Tokenizers 0.10.3
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.