Lilya commited on
Commit
fe50f14
·
1 Parent(s): 8e0e79a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: distilbert-base-uncased-ner-invoiceSenderRecipient_clean_inv_27_02
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-base-uncased-ner-invoiceSenderRecipient_clean_inv_27_02
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0160
23
+ - Precision: 0.9514
24
+ - Recall: 0.9593
25
+ - F1: 0.9553
26
+ - Accuracy: 0.9953
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 2
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.0078 | 0.09 | 500 | 0.0213 | 0.9269 | 0.9514 | 0.9390 | 0.9937 |
59
+ | 0.008 | 0.17 | 1000 | 0.0230 | 0.9246 | 0.9516 | 0.9379 | 0.9935 |
60
+ | 0.007 | 0.26 | 1500 | 0.0234 | 0.9400 | 0.9478 | 0.9439 | 0.9942 |
61
+ | 0.0065 | 0.34 | 2000 | 0.0238 | 0.9280 | 0.9537 | 0.9406 | 0.9936 |
62
+ | 0.0071 | 0.43 | 2500 | 0.0221 | 0.9291 | 0.9570 | 0.9428 | 0.9939 |
63
+ | 0.007 | 0.52 | 3000 | 0.0210 | 0.9393 | 0.9457 | 0.9425 | 0.9941 |
64
+ | 0.0072 | 0.6 | 3500 | 0.0197 | 0.9448 | 0.9490 | 0.9469 | 0.9945 |
65
+ | 0.0071 | 0.69 | 4000 | 0.0196 | 0.9400 | 0.9555 | 0.9477 | 0.9945 |
66
+ | 0.0109 | 0.77 | 4500 | 0.0178 | 0.9458 | 0.9499 | 0.9478 | 0.9946 |
67
+ | 0.01 | 0.86 | 5000 | 0.0191 | 0.9443 | 0.9489 | 0.9466 | 0.9945 |
68
+ | 0.0103 | 0.95 | 5500 | 0.0181 | 0.9466 | 0.9530 | 0.9498 | 0.9947 |
69
+ | 0.0081 | 1.03 | 6000 | 0.0191 | 0.9448 | 0.9578 | 0.9512 | 0.9948 |
70
+ | 0.0102 | 1.12 | 6500 | 0.0171 | 0.9454 | 0.9550 | 0.9502 | 0.9948 |
71
+ | 0.01 | 1.21 | 7000 | 0.0178 | 0.9460 | 0.9584 | 0.9521 | 0.9949 |
72
+ | 0.0107 | 1.29 | 7500 | 0.0164 | 0.9498 | 0.9552 | 0.9525 | 0.9950 |
73
+ | 0.0107 | 1.38 | 8000 | 0.0166 | 0.9461 | 0.9596 | 0.9528 | 0.9950 |
74
+ | 0.0095 | 1.46 | 8500 | 0.0170 | 0.9402 | 0.9626 | 0.9513 | 0.9949 |
75
+ | 0.0097 | 1.55 | 9000 | 0.0161 | 0.9455 | 0.9595 | 0.9524 | 0.9950 |
76
+ | 0.01 | 1.64 | 9500 | 0.0159 | 0.9502 | 0.9583 | 0.9542 | 0.9952 |
77
+ | 0.01 | 1.72 | 10000 | 0.0160 | 0.9488 | 0.9598 | 0.9543 | 0.9952 |
78
+ | 0.0095 | 1.81 | 10500 | 0.0157 | 0.9502 | 0.9602 | 0.9552 | 0.9953 |
79
+ | 0.0087 | 1.89 | 11000 | 0.0160 | 0.9514 | 0.9593 | 0.9553 | 0.9953 |
80
+ | 0.0089 | 1.98 | 11500 | 0.0160 | 0.9502 | 0.9608 | 0.9555 | 0.9953 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.15.0
86
+ - Pytorch 1.13.1
87
+ - Datasets 2.3.2
88
+ - Tokenizers 0.10.3