Files changed (1) hide show
  1. README.md +58 -153
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
  # Model Card for Model ID
@@ -15,23 +15,21 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
  - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** https://arxiv.org/abs/2402.08327
34
- - **Demo [optional]:** [More Information Needed]
 
 
35
 
36
  ## Uses
37
 
@@ -41,159 +39,66 @@ This is the model card of a 🤗 transformers model that has been pushed on the
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- - **Hardware Type:** [More Information Needed]
146
- - **Hours used:** [More Information Needed]
147
- - **Cloud Provider:** [More Information Needed]
148
- - **Compute Region:** [More Information Needed]
149
- - **Carbon Emitted:** [More Information Needed]
150
-
151
- ## Technical Specifications [optional]
152
-
153
- ### Model Architecture and Objective
154
-
155
- [More Information Needed]
156
-
157
- ### Compute Infrastructure
158
-
159
- [More Information Needed]
160
-
161
- #### Hardware
162
-
163
- [More Information Needed]
164
-
165
- #### Software
166
-
167
- [More Information Needed]
168
-
169
- ## Citation [optional]
170
-
171
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
172
 
173
  **BibTeX:**
 
 
 
 
 
 
 
 
 
174
 
175
- [More Information Needed]
176
-
177
- **APA:**
178
-
179
- [More Information Needed]
180
-
181
- ## Glossary [optional]
182
-
183
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
184
-
185
- [More Information Needed]
186
-
187
- ## More Information [optional]
188
-
189
- [More Information Needed]
190
-
191
- ## Model Card Authors [optional]
192
-
193
- [More Information Needed]
194
-
195
- ## Model Card Contact
196
-
197
- [More Information Needed]
198
 
199
 
 
1
  ---
2
  library_name: transformers
3
+ tags: [KBVQA, Multimodal, Retrieval, Knowledge Retrieval, RAG, FLMR, PreFLMR, ColBERT]
4
  ---
5
 
6
  # Model Card for Model ID
 
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
+ This is the PreFLMR model
19
 
20
+ - **Model type:** PreFLMR is an open-source model for general knowledge retrieval. It is a transformer-based model that uses a combination of text and image inputs to retrieve relevant documents from a large corpus.
21
+ - **Language(s) (NLP):** English
 
 
 
22
  - **License:** [More Information Needed]
 
23
 
24
+ ### Model Sources
25
 
26
  <!-- Provide the basic links for the model. -->
27
 
28
+ - **Repository:** https://github.com/LinWeizheDragon/FLMR
29
+ - **Paper:** https://arxiv.org/abs/2402.08327
30
+ - **Demo:** http://region-3.seetacloud.com:38703/
31
+ - **Blog Post:** https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/
32
+ - **Project Page:** https://preflmr.github.io/
33
 
34
  ## Uses
35
 
 
39
 
40
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
41
 
42
+ This model can be used directly to retrieve documents from a large corpus using a combination of text and image input queries. The retrieval useage can be found in the [official implementation](https://github.com/LinWeizheDragon/FLMR).
43
 
44
+ ### Downstream Use
45
 
46
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
47
 
48
+ This model can be used combined with language models to create a retrieval-augmented language model. The useage for Knowledge-based VQA can be found in https://github.com/linweizhedragon/retrieval-augmented-visual-question-answering
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  ## How to Get Started with the Model
51
 
52
  Use the code below to get started with the model.
53
 
54
+ ```python
55
+ from transformers import AutoConfig, AutoModel, AutoImageProcessor, AutoTokenizer
56
+ import torch
57
+
58
+ checkpoint_path = "LinWeizheDragon/PreFLMR_ViT-L"
59
+ image_processor_name = "openai/clip-vit-large-patch14"
60
+ query_tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, subfolder="query_tokenizer", trust_remote_code=True)
61
+ context_tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, subfolder="context_tokenizer", trust_remote_code=True)
62
+
63
+ model = AutoModel.from_pretrained(checkpoint_path,
64
+ query_tokenizer=query_tokenizer,
65
+ context_tokenizer=context_tokenizer,
66
+ trust_remote_code=True,
67
+ )
68
+ image_processor = AutoImageProcessor.from_pretrained(image_processor_name)
69
+
70
+ Q_encoding = query_tokenizer(["Using the provided image, obtain documents that address the subsequent question: What is the capital of France?", "Extract documents linked to the question provided in conjunction with the image: What is the capital of China?"])
71
+ D_encoding = context_tokenizer(["Paris is the capital of France.", "Beijing is the capital of China.",
72
+ "Paris is the capital of France.", "Beijing is the capital of China."])
73
+ Q_pixel_values = torch.zeros(2, 3, 224, 224)
74
+ inputs = dict(
75
+ query_input_ids=Q_encoding['input_ids'],
76
+ query_attention_mask=Q_encoding['attention_mask'],
77
+ query_pixel_values=Q_pixel_values,
78
+ context_input_ids=D_encoding['input_ids'],
79
+ context_attention_mask=D_encoding['attention_mask'],
80
+ use_in_batch_negatives=True,
81
+ )
82
+
83
+ res = model.forward(**inputs)
84
+ print(res)
85
+ ```
86
+
87
+ ## Training datasets
88
+ The model is trained on a combination of eight image-text datasets and a text-only dataset.
89
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  **BibTeX:**
93
+ ```
94
+ @article{Lin_Mei_Chen_Byrne_2024,
95
+ title={PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers},
96
+ url={http://arxiv.org/abs/2402.08327},
97
+ number={arXiv:2402.08327},
98
+ publisher={arXiv},
99
+ author={Lin, Weizhe and Mei, Jingbiao and Chen, Jinghong and Byrne, Bill},
100
+ year={2024}}
101
+ ```
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104