LiquAId's picture
Update README.md
ca11239 verified
|
raw
history blame
2.65 kB
metadata
language:
  - de
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-tiny-german-V2-HanNeurAI
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0 German shuffled 200k rows
          type: mozilla-foundation/common_voice_11_0
          config: de
          split: test
          args: 'config: de, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 32.33273006844562

whisper-tiny-german-V2-HanNeurAI

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5818
  • Wer: 32.3327

This fine-tuning model is part of my school project. With limitation of my compute, I scale down the dataset from german common voice to shuffled 200k rows

Additional information can be found in this github: HanCreation/Whisper-Tiny-German

Model description

Model Parameter (pipe.model.num_parameters()): 37760640 (37M)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2054 0.08 1000 0.7062 39.0698
0.1861 0.16 2000 0.6687 36.4857
0.1677 0.24 3000 0.6393 35.6849
0.2019 0.32 4000 0.6193 34.4385
0.1808 0.4 5000 0.6103 33.8459
0.1697 0.48 6000 0.5956 32.8519
0.1468 0.56 7000 0.5884 32.7029
0.1906 0.64 8000 0.5818 32.3327

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure