G0513HMA5H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1235
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.1714 | 0.09 | 10 | 2.8600 |
2.6228 | 0.18 | 20 | 2.1695 |
1.764 | 0.27 | 30 | 1.2598 |
0.9021 | 0.36 | 40 | 0.4452 |
0.2786 | 0.45 | 50 | 0.1866 |
0.1669 | 0.54 | 60 | 0.1556 |
0.153 | 0.63 | 70 | 0.1524 |
0.1532 | 0.73 | 80 | 0.1498 |
0.1427 | 0.82 | 90 | 0.1490 |
0.1461 | 0.91 | 100 | 0.1486 |
0.1494 | 1.0 | 110 | 0.1487 |
0.1435 | 1.09 | 120 | 0.1487 |
0.145 | 1.18 | 130 | 0.1473 |
0.1452 | 1.27 | 140 | 0.1461 |
0.1475 | 1.36 | 150 | 0.1447 |
0.1413 | 1.45 | 160 | 0.1474 |
0.1427 | 1.54 | 170 | 0.1444 |
0.1437 | 1.63 | 180 | 0.1426 |
0.1429 | 1.72 | 190 | 0.1420 |
0.1386 | 1.81 | 200 | 0.1366 |
0.1382 | 1.9 | 210 | 0.1363 |
0.1371 | 1.99 | 220 | 0.1320 |
0.1312 | 2.08 | 230 | 0.1298 |
0.1277 | 2.18 | 240 | 0.1323 |
0.1296 | 2.27 | 250 | 0.1320 |
0.1297 | 2.36 | 260 | 0.1298 |
0.1283 | 2.45 | 270 | 0.1276 |
0.1258 | 2.54 | 280 | 0.1272 |
0.122 | 2.63 | 290 | 0.1250 |
0.1214 | 2.72 | 300 | 0.1234 |
0.1275 | 2.81 | 310 | 0.1233 |
0.1236 | 2.9 | 320 | 0.1235 |
0.1247 | 2.99 | 330 | 0.1235 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/G0513HMA5H
Base model
google/gemma-2b