|
--- |
|
license: gemma |
|
base_model: google/gemma-2b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: G0514HMA10H |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# G0514HMA10H |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: -17.7415 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.0338 | 0.09 | 10 | 0.3604 | |
|
| -0.372 | 0.18 | 20 | -1.5506 | |
|
| -2.7334 | 0.27 | 30 | -4.3453 | |
|
| -5.5531 | 0.36 | 40 | -7.2099 | |
|
| -8.3571 | 0.45 | 50 | -9.9832 | |
|
| -11.0034 | 0.54 | 60 | -12.4742 | |
|
| -13.3507 | 0.63 | 70 | -14.4048 | |
|
| -15.0045 | 0.73 | 80 | -15.7395 | |
|
| -16.1247 | 0.82 | 90 | -16.6047 | |
|
| -16.8322 | 0.91 | 100 | -17.0754 | |
|
| -17.1905 | 1.0 | 110 | -17.3142 | |
|
| -17.3786 | 1.09 | 120 | -17.4479 | |
|
| -17.4861 | 1.18 | 130 | -17.5251 | |
|
| -17.5408 | 1.27 | 140 | -17.5761 | |
|
| -17.5877 | 1.36 | 150 | -17.6039 | |
|
| -17.6148 | 1.45 | 160 | -17.6306 | |
|
| -17.6334 | 1.54 | 170 | -17.6459 | |
|
| -17.6562 | 1.63 | 180 | -17.6606 | |
|
| -17.6709 | 1.72 | 190 | -17.6791 | |
|
| -17.6849 | 1.81 | 200 | -17.6912 | |
|
| -17.6955 | 1.9 | 210 | -17.7036 | |
|
| -17.7055 | 1.99 | 220 | -17.7137 | |
|
| -17.7159 | 2.08 | 230 | -17.7203 | |
|
| -17.7265 | 2.18 | 240 | -17.7251 | |
|
| -17.7262 | 2.27 | 250 | -17.7294 | |
|
| -17.7319 | 2.36 | 260 | -17.7344 | |
|
| -17.7389 | 2.45 | 270 | -17.7360 | |
|
| -17.7395 | 2.54 | 280 | -17.7393 | |
|
| -17.7427 | 2.63 | 290 | -17.7389 | |
|
| -17.7449 | 2.72 | 300 | -17.7409 | |
|
| -17.7413 | 2.81 | 310 | -17.7415 | |
|
| -17.7452 | 2.9 | 320 | -17.7415 | |
|
| -17.7458 | 2.99 | 330 | -17.7415 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.0 |
|
|