|
--- |
|
license: gemma |
|
base_model: google/gemma-2b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: G0514HMA20H |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# G0514HMA20H |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: -17.8888 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 60 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.7427 | 0.09 | 10 | -0.3960 | |
|
| -1.7071 | 0.18 | 20 | -3.6281 | |
|
| -5.2642 | 0.27 | 30 | -7.4868 | |
|
| -9.0314 | 0.36 | 40 | -11.0106 | |
|
| -12.2572 | 0.45 | 50 | -13.9498 | |
|
| -14.8718 | 0.54 | 60 | -15.9757 | |
|
| -16.4839 | 0.63 | 70 | -16.9719 | |
|
| -17.1594 | 0.73 | 80 | -17.3585 | |
|
| -17.4323 | 0.82 | 90 | -17.5206 | |
|
| -17.5617 | 0.91 | 100 | -17.6042 | |
|
| -17.6212 | 1.0 | 110 | -17.6490 | |
|
| -17.6671 | 1.09 | 120 | -17.6807 | |
|
| -17.6884 | 1.18 | 130 | -17.6997 | |
|
| -17.7069 | 1.27 | 140 | -17.7167 | |
|
| -17.7212 | 1.36 | 150 | -17.7313 | |
|
| -17.7366 | 1.45 | 160 | -17.7408 | |
|
| -17.7489 | 1.54 | 170 | -17.7577 | |
|
| -17.7679 | 1.63 | 180 | -17.7766 | |
|
| -17.7836 | 1.72 | 190 | -17.7952 | |
|
| -17.8096 | 1.81 | 200 | -17.8171 | |
|
| -17.8256 | 1.9 | 210 | -17.8360 | |
|
| -17.844 | 1.99 | 220 | -17.8501 | |
|
| -17.8551 | 2.08 | 230 | -17.8607 | |
|
| -17.8656 | 2.18 | 240 | -17.8707 | |
|
| -17.8732 | 2.27 | 250 | -17.8780 | |
|
| -17.8763 | 2.36 | 260 | -17.8821 | |
|
| -17.8785 | 2.45 | 270 | -17.8839 | |
|
| -17.8842 | 2.54 | 280 | -17.8864 | |
|
| -17.8859 | 2.63 | 290 | -17.8876 | |
|
| -17.8859 | 2.72 | 300 | -17.8882 | |
|
| -17.8836 | 2.81 | 310 | -17.8885 | |
|
| -17.8875 | 2.9 | 320 | -17.8888 | |
|
| -17.8874 | 2.99 | 330 | -17.8888 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.0 |
|
|