|
--- |
|
license: gemma |
|
base_model: google/gemma-2b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: G0514HMA4H |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# G0514HMA4H |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: -17.7428 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 80 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.9766 | 0.09 | 10 | 0.1938 | |
|
| -0.7095 | 0.18 | 20 | -2.1543 | |
|
| -3.5129 | 0.27 | 30 | -5.3325 | |
|
| -6.6654 | 0.36 | 40 | -8.4889 | |
|
| -9.7041 | 0.45 | 50 | -11.4077 | |
|
| -12.4428 | 0.54 | 60 | -13.8134 | |
|
| -14.5638 | 0.63 | 70 | -15.4354 | |
|
| -15.9411 | 0.73 | 80 | -16.4692 | |
|
| -16.7235 | 0.82 | 90 | -17.0250 | |
|
| -17.1404 | 0.91 | 100 | -17.2723 | |
|
| -17.3354 | 1.0 | 110 | -17.4128 | |
|
| -17.4522 | 1.09 | 120 | -17.4974 | |
|
| -17.5272 | 1.18 | 130 | -17.5592 | |
|
| -17.5718 | 1.27 | 140 | -17.6055 | |
|
| -17.6154 | 1.36 | 150 | -17.6336 | |
|
| -17.6416 | 1.45 | 160 | -17.6542 | |
|
| -17.656 | 1.54 | 170 | -17.6683 | |
|
| -17.6769 | 1.63 | 180 | -17.6832 | |
|
| -17.6876 | 1.72 | 190 | -17.6950 | |
|
| -17.6975 | 1.81 | 200 | -17.7028 | |
|
| -17.7043 | 1.9 | 210 | -17.7114 | |
|
| -17.7137 | 1.99 | 220 | -17.7188 | |
|
| -17.7217 | 2.08 | 230 | -17.7245 | |
|
| -17.7306 | 2.18 | 240 | -17.7293 | |
|
| -17.7293 | 2.27 | 250 | -17.7330 | |
|
| -17.7348 | 2.36 | 260 | -17.7365 | |
|
| -17.741 | 2.45 | 270 | -17.7386 | |
|
| -17.7415 | 2.54 | 280 | -17.7403 | |
|
| -17.7442 | 2.63 | 290 | -17.7410 | |
|
| -17.7456 | 2.72 | 300 | -17.7422 | |
|
| -17.7426 | 2.81 | 310 | -17.7425 | |
|
| -17.7471 | 2.9 | 320 | -17.7427 | |
|
| -17.7473 | 2.99 | 330 | -17.7428 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.0 |
|
|