Phi0511B2
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0718
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.4836 | 0.09 | 10 | 5.4324 |
5.4542 | 0.18 | 20 | 5.2447 |
4.9491 | 0.27 | 30 | 4.1820 |
3.3816 | 0.36 | 40 | 2.1650 |
1.3373 | 0.45 | 50 | 0.5823 |
0.4096 | 0.54 | 60 | 0.1966 |
0.1569 | 0.63 | 70 | 0.1428 |
0.1378 | 0.73 | 80 | 0.1266 |
0.1135 | 0.82 | 90 | 0.1250 |
0.127 | 0.91 | 100 | 0.1191 |
0.1078 | 1.0 | 110 | 0.1075 |
0.0958 | 1.09 | 120 | 0.0948 |
0.0877 | 1.18 | 130 | 0.0946 |
0.0995 | 1.27 | 140 | 0.0841 |
0.0822 | 1.36 | 150 | 0.1001 |
0.0901 | 1.45 | 160 | 0.0814 |
0.0754 | 1.54 | 170 | 0.0833 |
0.0806 | 1.63 | 180 | 0.1000 |
0.0763 | 1.72 | 190 | 0.0800 |
0.0787 | 1.81 | 200 | 0.0787 |
0.0637 | 1.9 | 210 | 0.0753 |
0.0657 | 1.99 | 220 | 0.0799 |
0.0605 | 2.08 | 230 | 0.0777 |
0.0625 | 2.18 | 240 | 0.0740 |
0.0544 | 2.27 | 250 | 0.0743 |
0.0572 | 2.36 | 260 | 0.0736 |
0.0593 | 2.45 | 270 | 0.0739 |
0.0575 | 2.54 | 280 | 0.0729 |
0.0584 | 2.63 | 290 | 0.0737 |
0.057 | 2.72 | 300 | 0.0728 |
0.0622 | 2.81 | 310 | 0.0720 |
0.0566 | 2.9 | 320 | 0.0718 |
0.0594 | 2.99 | 330 | 0.0718 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/Phi0511B2
Base model
microsoft/Phi-3-mini-4k-instruct