metadata
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: V0309B1
results: []
V0309B1
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0618
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5503 | 0.09 | 10 | 1.8060 |
0.926 | 0.17 | 20 | 0.1557 |
0.1416 | 0.26 | 30 | 0.0878 |
0.1055 | 0.34 | 40 | 0.0739 |
0.1001 | 0.43 | 50 | 0.0704 |
0.0863 | 0.51 | 60 | 0.0660 |
0.0819 | 0.6 | 70 | 0.0676 |
0.0838 | 0.68 | 80 | 0.0638 |
0.0736 | 0.77 | 90 | 0.0636 |
0.0766 | 0.85 | 100 | 0.0610 |
0.0787 | 0.94 | 110 | 0.0607 |
0.076 | 1.02 | 120 | 0.0604 |
0.0738 | 1.11 | 130 | 0.0619 |
0.0711 | 1.19 | 140 | 0.0583 |
0.068 | 1.28 | 150 | 0.0573 |
0.0696 | 1.37 | 160 | 0.0606 |
0.068 | 1.45 | 170 | 0.0610 |
0.0637 | 1.54 | 180 | 0.0596 |
0.0678 | 1.62 | 190 | 0.0583 |
0.066 | 1.71 | 200 | 0.0594 |
0.0679 | 1.79 | 210 | 0.0586 |
0.0632 | 1.88 | 220 | 0.0605 |
0.0606 | 1.96 | 230 | 0.0606 |
0.0622 | 2.05 | 240 | 0.0611 |
0.0578 | 2.13 | 250 | 0.0610 |
0.0562 | 2.22 | 260 | 0.0627 |
0.0507 | 2.3 | 270 | 0.0659 |
0.0615 | 2.39 | 280 | 0.0642 |
0.06 | 2.47 | 290 | 0.0627 |
0.0588 | 2.56 | 300 | 0.0619 |
0.0626 | 2.65 | 310 | 0.0614 |
0.053 | 2.73 | 320 | 0.0618 |
0.0567 | 2.82 | 330 | 0.0616 |
0.0525 | 2.9 | 340 | 0.0619 |
0.057 | 2.99 | 350 | 0.0618 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1