|
--- |
|
language: |
|
- en |
|
- zh |
|
library_name: transformers |
|
tags: |
|
- Long Context |
|
- chatglm |
|
- llama |
|
datasets: |
|
- THUDM/LongWriter-6k |
|
license: llama3.1 |
|
--- |
|
# LongWriter-llama3.1-8b |
|
|
|
<p align="center"> |
|
π€ <a href="https://huggingface.co/datasets/THUDM/LongWriter-6k" target="_blank">[LongWriter Dataset] </a> β’ π» <a href="https://github.com/THUDM/LongWriter" target="_blank">[Github Repo]</a> β’ π <a href="https://arxiv.org/abs/2408.07055" target="_blank">[LongWriter Paper]</a> |
|
</p> |
|
|
|
LongWriter-llama3.1-8b is trained based on [Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B), and is capable of generating 10,000+ words at once. |
|
|
|
Environment: `transformers>=4.43.0` |
|
|
|
Please ahere to the prompt template (system prompt is optional): `<<SYS>>\n{system prompt}\n<</SYS>>\n\n[INST]{query1}[/INST]{response1}[INST]{query2}[/INST]{response2}...` |
|
|
|
A simple demo for deployment of the model: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-llama3.1-8b", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-llama3.1-8b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") |
|
model = model.eval() |
|
query = "Write a 10000-word China travel guide" |
|
prompt = f"[INST]{query}[/INST]" |
|
input = tokenizer(prompt, truncation=False, return_tensors="pt").to(device) |
|
context_length = input.input_ids.shape[-1] |
|
output = model.generate( |
|
**input, |
|
max_new_tokens=32768, |
|
num_beams=1, |
|
do_sample=True, |
|
temperature=0.5, |
|
)[0] |
|
response = tokenizer.decode(output[context_length:], skip_special_tokens=True) |
|
print(response) |
|
``` |
|
You can also deploy the model with [vllm](https://github.com/vllm-project/vllm), which allows 10,000+ words generation within a minute. Here is an example code: |
|
```python |
|
model = LLM( |
|
model= "THUDM/LongWriter-llama3.1-8b", |
|
dtype="auto", |
|
trust_remote_code=True, |
|
tensor_parallel_size=1, |
|
max_model_len=32768, |
|
gpu_memory_utilization=0.5, |
|
) |
|
tokenizer = model.get_tokenizer() |
|
generation_params = SamplingParams( |
|
temperature=0.5, |
|
top_p=0.8, |
|
top_k=50, |
|
max_tokens=32768, |
|
repetition_penalty=1, |
|
) |
|
query = "Write a 10000-word China travel guide" |
|
prompt = f"[INST]{query}[/INST]" |
|
input_ids = tokenizer(prompt, truncation=False, return_tensors="pt").input_ids[0].tolist() |
|
outputs = model.generate( |
|
sampling_params=generation_params, |
|
prompt_token_ids=[input_ids], |
|
) |
|
output = outputs[0] |
|
print(output.outputs[0].text) |
|
``` |
|
|
|
License: [Llama-3.1 License](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) |
|
|
|
## Citation |
|
|
|
If you find our work useful, please consider citing LongWriter: |
|
|
|
``` |
|
@article{bai2024longwriter, |
|
title={LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs}, |
|
author={Yushi Bai and Jiajie Zhang and Xin Lv and Linzhi Zheng and Siqi Zhu and Lei Hou and Yuxiao Dong and Jie Tang and Juanzi Li}, |
|
journal={arXiv preprint arXiv:2408.07055}, |
|
year={2024} |
|
} |
|
``` |