|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
datasets: |
|
- jondurbin/airoboros-2.2 |
|
- Open-Orca/OpenOrca |
|
- garage-bAInd/Open-Platypus |
|
- WizardLM/WizardLM_evol_instruct_V2_196k |
|
- TokenBender/python_eval_instruct_51k |
|
tags: |
|
- llama-2 |
|
- code |
|
license: llama2 |
|
model-index: |
|
- name: SpeechlessCoder |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: openai_humaneval |
|
name: HumanEval |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 50.0 |
|
verified: false |
|
--- |
|
|
|
<p><h1> speechless-code-mistral-7b-v1.0 </h1></p> |
|
|
|
### NOTE: Requantized using WizardLM_evol_instruct_V2_196k for calibration |
|
|
|
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-AWQ) |
|
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GPTQ) |
|
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-code-mistral-7B-v1.0-GGUF) |
|
|
|
Use the following dataset to fine-tune mistralai/Mistral-7B-v0.1 in order to improve the model's reasoning and planning abilities. |
|
|
|
Total 201,981 samples. |
|
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples. |
|
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples. |
|
- garage-bAInd/Open-Platypus: 100%, 24,926 samples. |
|
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples |
|
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples |
|
- Spider: 8,659 samples |
|
|
|
|
|
|
|
## HumanEval |
|
|
|
| Metric | Value | |
|
| --- | --- | |
|
| humaneval-python | 50.0| |
|
|
|
[Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard) |
|
|
|
CodeLlama-34B-Python: 53.29 |
|
|
|
CodeLlama-34B-Instruct: 50.79 |
|
|
|
CodeLlama-13B-Instruct: 50.6 |
|
|
|
CodeLlama-34B: 45.11 |
|
|
|
CodeLlama-13B-Python: 42.89 |
|
|
|
CodeLlama-13B: 35.07 |
|
|
|
## lm-evaluation-harness |
|
|
|
[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
| Metric | Value | |
|
| --- | --- | |
|
| ARC |59.64 | |
|
| HellaSwag |82.25 | |
|
| MMLU | 61.33 | |
|
| TruthfulQA | 48.45 | |
|
| Average | 62.92 | |
|
|
|
## Parameters |
|
|
|
| | | |
|
|------ | ------ | |
|
| lr | 2e-4 | |
|
| lr_scheduler_type | cosine | |
|
| weight_decay | 0.0 | |
|
| optim | paged_adamw_8bit | |
|
| flash_attention | True | |
|
| rerope | False | |
|
| max_new_tokens | 4096 | |
|
| num_train_epochs | 2 | |
|
| bits | 4 | |
|
| lora_r | 64 | |
|
| lora_alpha | 16 | |
|
| lora_dropout | 0.05 | |
|
| double_quant | True | |
|
| quant_type | nf4 | |
|
| dataset_format | airoboros | |
|
| mini_batch_size | 2 | |
|
| grandient_accumulation_steps | 32 | |
|
| bf16 | True | |
|
|
|
A40-48G x 2 |
|
|
|
| | | |
|
|------ | ------ | |
|
| epoch | 2.0 | |
|
| etrain_loss | 0.5 | |
|
| etrain_runtime | 1 day, 10:25:26.77 | |
|
| etrain_samples_per_second | 3.194 | |
|
| etrain_steps_per_second | 0.025 | |
|
| eeval_loss | 0.5146 | |
|
| eeval_runtime | 0:00:25.04 | |
|
| eeval_samples_per_second | 7.985 | |
|
| eeval_steps_per_second | | |
|
|