metadata
datasets:
- Lin-Chen/ShareGPT4V
pipeline_tag: image-text-to-text
library_name: xtuner
base_model: xtuner/llava-llama-3-8b-v1_1
tags:
- llama-cpp
- gguf-my-repo
LouiSeHU/llava-llama-3-8b-v1_1-Q8_0-GGUF
This model was converted to GGUF format from xtuner/llava-llama-3-8b-v1_1
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo LouiSeHU/llava-llama-3-8b-v1_1-Q8_0-GGUF --hf-file llava-llama-3-8b-v1_1-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo LouiSeHU/llava-llama-3-8b-v1_1-Q8_0-GGUF --hf-file llava-llama-3-8b-v1_1-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo LouiSeHU/llava-llama-3-8b-v1_1-Q8_0-GGUF --hf-file llava-llama-3-8b-v1_1-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo LouiSeHU/llava-llama-3-8b-v1_1-Q8_0-GGUF --hf-file llava-llama-3-8b-v1_1-q8_0.gguf -c 2048