melita1mu / README.md
Luka041's picture
Upload tokenizer
7f3a649 verified
metadata
language:
  - hr
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: melita1mu
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_hr_fleurs
          type: google/fleurs
          config: hr_hr
          split: test
          args: 'config: hr, split: test'
        metrics:
          - type: wer
            value: 45.596060228687875
            name: Wer

melita1mu

This model is a fine-tuned version of openai/whisper-small on the common_voice_hr_fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5013
  • Wer: 45.5961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0204 4.17 1000 0.4216 36.3580
0.0017 8.33 2000 0.4697 37.7222
0.0008 12.5 3000 0.4922 39.6015
0.0006 16.67 4000 0.5013 45.5961

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1