nsfw-image-detector

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8138
  • Accuracy: 0.9316
  • Accuracy K: 0.9887

You can access 384 version on:

https://huggingface.co/LukeJacob2023/nsfw-image-detector-384

Model description

Labels: ['drawings', 'hentai', 'neutral', 'porn', 'sexy']

Intended uses & limitations

Training and evaluation data

A custom dataset about 28k images, if you need to improve your domain's accurate, you can contribute the dataset to me.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Accuracy K
0.7836 1.0 720 0.3188 0.9085 0.9891
0.2441 2.0 1440 0.2382 0.9257 0.9936
0.1412 3.0 2160 0.2334 0.9335 0.9932
0.0857 4.0 2880 0.2934 0.9347 0.9934
0.0569 5.0 3600 0.4500 0.9307 0.9927
0.0371 6.0 4320 0.5524 0.9357 0.9910
0.0232 7.0 5040 0.6691 0.9347 0.9913
0.02 8.0 5760 0.7408 0.9335 0.9917
0.0154 9.0 6480 0.8138 0.9316 0.9887

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
48,735
Safetensors
Model size
85.8M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LukeJacob2023/nsfw-image-detector

Finetuned
(1801)
this model

Spaces using LukeJacob2023/nsfw-image-detector 5

Evaluation results