Developer's note
Please do download and try out the model locally or on colab, as it helps huggingface determine that this model is important enough to have a serverless API for everyone to use. Also, the model is totally safe for everyone to use. The only reason one of the files has been marked unsafe because it is a pickle file.Thank you all for so much support !!
Overview
This model is a fine-tuned version of google-bert/bert-base-uncased on this Kaggle dataset. It achieves the following results on the evaluation set:
- Macro f1: 89.44%
- Weighted f1: 93.15%
- Accuracy: 93.80%
- Balanced accuracy: 90.42%
Model description
This finetuned version of google-bert/bert-base-uncased excels at detecting the crime type from the description of the crime. It has 34 labels.
Training and evaluation data
- eval_macro f1: 89.44%
- eval_weighted f1: 93.15%
- eval_accuracy: 93.79%
- eval_balanced accuracy: 90.42%
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy |
---|---|---|---|---|---|---|---|
0.1859 | 1.0 | 5538 | 0.1297 | 0.8561 | 0.9249 | 0.9366 | 0.8571 |
0.1281 | 2.0 | 11076 | 0.1260 | 0.8702 | 0.9248 | 0.9369 | 0.8740 |
0.1279 | 3.0 | 16614 | 0.1251 | 0.8728 | 0.9314 | 0.9380 | 0.8749 |
0.1272 | 4.0 | 22152 | 0.1276 | 0.8652 | 0.9247 | 0.9367 | 0.8655 |
0.1266 | 5.0 | 27690 | 0.1256 | 0.8685 | 0.9252 | 0.9345 | 0.8724 |
0.1284 | 6.0 | 33228 | 0.1264 | 0.8668 | 0.9252 | 0.9345 | 0.8724 |
0.1272 | 7.0 | 38766 | 0.1247 | 0.8739 | 0.9313 | 0.9379 | 0.8748 |
0.1262 | 8.0 | 44304 | 0.1258 | 0.8892 | 0.9246 | 0.9366 | 0.9024 |
0.1263 | 9.0 | 49842 | 0.1251 | 0.9038 | 0.9310 | 0.9378 | 0.9041 |
0.1267 | 10.0 | 55380 | 0.1244 | 0.8897 | 0.9253 | 0.9345 | 0.9018 |
0.1271 | 11.0 | 60918 | 0.1251 | 0.8951 | 0.9325 | 0.9371 | 0.9036 |
0.1268 | 12.0 | 66456 | 0.1248 | 0.8944 | 0.9315 | 0.9380 | 0.9042 |
0.1254 | 13.0 | 71994 | 0.1247 | 0.9038 | 0.9314 | 0.9381 | 0.9043 |
0.126 | 14.0 | 77532 | 0.1263 | 0.8944 | 0.9314 | 0.9379 | 0.9042 |
0.1261 | 15.0 | 83070 | 0.1274 | 0.8891 | 0.9250 | 0.9348 | 0.9020 |
0.1253 | 16.0 | 88608 | 0.1241 | 0.8944 | 0.9315 | 0.9380 | 0.9042 |
0.1251 | 17.0 | 94146 | 0.1244 | 0.9042 | 0.9314 | 0.9380 | 0.9042 |
0.125 | 18.0 | 99684 | 0.1249 | 0.9041 | 0.9314 | 0.9380 | 0.9043 |
0.125 | 19.0 | 105222 | 0.1245 | 0.8942 | 0.9312 | 0.9380 | 0.9042 |
0.1257 | 20.0 | 110760 | 0.1248 | 0.9041 | 0.9313 | 0.9379 | 0.9042 |
0.125 | 21.0 | 116298 | 0.1248 | 0.9000 | 0.9254 | 0.9344 | 0.9018 |
0.1248 | 22.0 | 121836 | 0.1244 | 0.9041 | 0.9313 | 0.9379 | 0.9042 |
0.1246 | 23.0 | 127374 | 0.1245 | 0.9042 | 0.9315 | 0.9380 | 0.9042 |
0.1247 | 24.0 | 132912 | 0.1242 | 0.8943 | 0.9314 | 0.9380 | 0.9043 |
0.1245 | 25.0 | 138450 | 0.1242 | 0.9042 | 0.9315 | 0.9380 | 0.9042 |
0.1245 | 26.0 | 143988 | 0.1245 | 0.9042 | 0.9314 | 0.9381 | 0.9043 |
0.1245 | 27.0 | 149526 | 0.1242 | 0.8944 | 0.9314 | 0.9381 | 0.9043 |
0.1244 | 28.0 | 155064 | 0.1242 | 0.9336 | 0.9315 | 0.9381 | 0.9337 |
0.1243 | 29.0 | 160602 | 0.1243 | 0.8944 | 0.9314 | 0.9381 | 0.9043 |
0.1243 | 30.0 | 166140 | 0.1243 | 0.8944 | 0.9314 | 0.9381 | 0.9043 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 154
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Luna-Skywalker/BERT-crime-analysis
Base model
google-bert/bert-base-uncased