MANMEET75's picture
Add new SentenceTransformer model.
5edc0d8 verified
metadata
base_model: nomic-ai/nomic-embed-text-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:530
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      If you receive a BharatPe speaker that you didn't order, please contact
      BharatPe support immediately. They will assist in resolving the issue and
      advise on the next steps.
    sentences:
      - Can I control multiple BharatPe speakers from one app?
      - >-
        What to do if the BharatPe speaker's transaction announcements are
        intermittently silent?
      - What should I do if I receive a BharatPe speaker without ordering it?
  - source_sentence: >-
      Remote control capabilities depend on the model of the BharatPe speaker.
      Check if your model supports remote control through the BharatPe app or a
      connected device.
    sentences:
      - How do I update my personal details in my Bharatpe account?
      - What are the benefits of the BharatPe speaker?
      - Can I control the BharatPe speaker remotely?
  - source_sentence: >-
      If the announcements are not clear, check the speaker's volume settings
      and ensure it's not placed near noisy equipment. If clarity doesn't
      improve, the speaker may need servicing.
    sentences:
      - >-
        What to do if my BharatPe speaker is not syncing with the transaction
        history in the app?
      - What should I do if the speaker is not announcing payments clearly?
      - The speaker doesn't produce any sound, what can be done?
  - source_sentence: >-
      If the speaker is causing interference, try relocating it or other devices
      to reduce the interference. Ensure there's a reasonable distance between
      the speaker and other wireless equipment.
    sentences:
      - Can I use my Bharatpe device for international transactions?
      - How do I know if my BharatPe speaker is under warranty?
      - >-
        What should I do if the BharatPe speaker is causing interference with
        other wireless devices?
  - source_sentence: >-
      I can understand and respond in multiple Indian regional languages. Feel
      free to communicate with me in the language you're most comfortable with.
    sentences:
      - How can I check if the BharatPe speaker is receiving a network signal?
      - Bharti, can you provide tips for effective online communication?
      - Bharti, what languages can you understand and respond to?
model-index:
  - name: Nomic v1.5 Chatbot Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.9069767441860465
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9767441860465116
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9767441860465116
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9767441860465116
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9069767441860465
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32558139534883723
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1953488372093023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09767441860465115
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9069767441860465
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9767441860465116
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9767441860465116
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9767441860465116
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9509950990863808
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9418604651162791
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.942829457364341
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.9069767441860465
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9767441860465116
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9767441860465116
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9767441860465116
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9069767441860465
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32558139534883723
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1953488372093023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09767441860465115
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9069767441860465
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9767441860465116
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9767441860465116
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9767441860465116
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9509950990863808
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9418604651162791
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9426356589147287
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.8837209302325582
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9534883720930233
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9767441860465116
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9767441860465116
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8837209302325582
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3178294573643411
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1953488372093023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09767441860465115
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8837209302325582
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9534883720930233
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9767441860465116
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9767441860465116
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.937755019041576
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9244186046511628
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9246686671667917
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.8837209302325582
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9767441860465116
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9767441860465116
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9767441860465116
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8837209302325582
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32558139534883723
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1953488372093023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09767441860465115
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8837209302325582
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9767441860465116
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9767441860465116
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9767441860465116
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9393671921096366
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9263565891472867
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9263565891472867
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.9302325581395349
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9767441860465116
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9767441860465116
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9767441860465116
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9302325581395349
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32558139534883723
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1953488372093023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09767441860465115
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9302325581395349
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9767441860465116
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9767441860465116
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9767441860465116
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9595781280730911
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9534883720930233
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9537827494848395
            name: Cosine Map@100

Nomic v1.5 Chatbot Matryoshka

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MANMEET75/nomic-embed-text-v1.5-Chatbot-matryoshka")
# Run inference
sentences = [
    "I can understand and respond in multiple Indian regional languages. Feel free to communicate with me in the language you're most comfortable with.",
    'Bharti, what languages can you understand and respond to?',
    'Bharti, can you provide tips for effective online communication?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.907
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.907
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.907
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.951
cosine_mrr@10 0.9419
cosine_map@100 0.9428

Information Retrieval

Metric Value
cosine_accuracy@1 0.907
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.907
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.907
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.951
cosine_mrr@10 0.9419
cosine_map@100 0.9426

Information Retrieval

Metric Value
cosine_accuracy@1 0.8837
cosine_accuracy@3 0.9535
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.8837
cosine_precision@3 0.3178
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.8837
cosine_recall@3 0.9535
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.9378
cosine_mrr@10 0.9244
cosine_map@100 0.9247

Information Retrieval

Metric Value
cosine_accuracy@1 0.8837
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.8837
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.8837
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.9394
cosine_mrr@10 0.9264
cosine_map@100 0.9264

Information Retrieval

Metric Value
cosine_accuracy@1 0.9302
cosine_accuracy@3 0.9767
cosine_accuracy@5 0.9767
cosine_accuracy@10 0.9767
cosine_precision@1 0.9302
cosine_precision@3 0.3256
cosine_precision@5 0.1953
cosine_precision@10 0.0977
cosine_recall@1 0.9302
cosine_recall@3 0.9767
cosine_recall@5 0.9767
cosine_recall@10 0.9767
cosine_ndcg@10 0.9596
cosine_mrr@10 0.9535
cosine_map@100 0.9538

Training Details

Training Dataset

Unnamed Dataset

  • Size: 530 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 11 tokens
    • mean: 35.33 tokens
    • max: 99 tokens
    • min: 7 tokens
    • mean: 17.3 tokens
    • max: 29 tokens
  • Samples:
    positive anchor
    BharatPe Speaker comes with the following benefits: - Helps you avoid payment fraud - Lightweight & Easy installation process - Compatible with SIM & GPRS connectivity - Comes with a battery, no hassle of constant charging - Available in 10 Languages - Cashback Offers - Free replacement To Know more and place an order, tap below http://bharatpe.in/speaker. What are the benefits of the BharatPe speaker?
    BharatPe Speaker comes with the following benefits: - Helps you avoid payment fraud - Lightweight & Easy installation process - Compatible with SIM & GPRS connectivity - Comes with a battery, no hassle of constant charging - Available in 10 Languages - Cashback Offers - Free replacement To Know more and place an order, tap below http://bharatpe.in/speaker. What advantages does the BharatPe speaker offer?
    BharatPe Speaker comes with the following benefits: - Helps you avoid payment fraud - Lightweight & Easy installation process - Compatible with SIM & GPRS connectivity - Comes with a battery, no hassle of constant charging - Available in 10 Languages - Cashback Offers - Free replacement To Know more and place an order, tap below http://bharatpe.in/speaker. Can you outline the benefits of using the BharatPe speaker?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.9412 1 - 0.7883 0.8148 0.8134 0.7657 0.8234
1.8824 2 - 0.8953 0.8956 0.8859 0.8273 0.8855
2.8235 3 - 0.9167 0.9150 0.9310 0.8926 0.9292
3.7647 4 - 0.9205 0.9208 0.9348 0.9073 0.9349
4.7059 5 - 0.9244 0.9247 0.9348 0.9151 0.9388
5.6471 6 - 0.9244 0.9247 0.9387 0.9189 0.9389
6.5882 7 - 0.9244 0.9247 0.9387 0.9189 0.9389
7.5294 8 - 0.9244 0.9247 0.9388 0.9538 0.9428
8.4706 9 - 0.9264 0.9247 0.9426 0.9538 0.9428
9.4118 10 1.9538 0.9264 0.9247 0.9426 0.9538 0.9428
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}