Create README.md
#3
by
minghaowu
- opened
README.md
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
widget:
|
7 |
+
- text: >-
|
8 |
+
Below is an instruction that describes a task.
|
9 |
+
|
10 |
+
Write a response that appropriately completes the request.
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
### Instruction:
|
15 |
+
|
16 |
+
how can I become more healthy?
|
17 |
+
|
18 |
+
|
19 |
+
### Response:
|
20 |
+
example_title: example
|
21 |
+
---
|
22 |
+
|
23 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
24 |
+
should probably proofread and complete it, then remove this comment. -->
|
25 |
+
|
26 |
+
<p align="center" width="100%">
|
27 |
+
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini/main/images/LaMnin.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
|
28 |
+
</p>
|
29 |
+
|
30 |
+
# LaMini-GPT-774M
|
31 |
+
|
32 |
+
[![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]()
|
33 |
+
|
34 |
+
This model is one of our LaMini model series in paper "[LaMini: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini)".
|
35 |
+
This model is a fine-tuned version of [cerebras/Cerebras-GPT-256M](https://huggingface.co/cerebras/Cerebras-GPT-256M) on [LaMini dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini/).
|
36 |
+
You can view other LaMini model series as follow. Note that not all models are performing as well. Models with ✩ are those with the best overall performance given their size/architecture. More details can be seen in our paper.
|
37 |
+
|
38 |
+
<table>
|
39 |
+
<thead>
|
40 |
+
<tr>
|
41 |
+
<th>Base model</th>
|
42 |
+
<th colspan="4">LaMini series (#parameters)</th>
|
43 |
+
</tr>
|
44 |
+
</thead>
|
45 |
+
<tbody>
|
46 |
+
<tr>
|
47 |
+
<td>T5</td>
|
48 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td>
|
49 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td>
|
50 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td>
|
51 |
+
<td></td>
|
52 |
+
</tr>
|
53 |
+
<tr>
|
54 |
+
<td>Flan-T5</td>
|
55 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td>
|
56 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td>
|
57 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td>
|
58 |
+
<td></td>
|
59 |
+
</tr>
|
60 |
+
<tr>
|
61 |
+
<td>Cerebras-GPT</td>
|
62 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td>
|
63 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td>
|
64 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td>
|
65 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td>
|
66 |
+
</tr>
|
67 |
+
<tr>
|
68 |
+
<td>GPT-2</td>
|
69 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td>
|
70 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td>
|
71 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td>
|
72 |
+
<td></td>
|
73 |
+
</tr>
|
74 |
+
<tr>
|
75 |
+
<td>GPT-Neo</td>
|
76 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td>
|
77 |
+
<td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td>
|
78 |
+
<td></td>
|
79 |
+
<td></td>
|
80 |
+
</tr>
|
81 |
+
<tr>
|
82 |
+
<td>GPT-J</td>
|
83 |
+
<td colspan="4">coming soon</td>
|
84 |
+
</tr>
|
85 |
+
<tr>
|
86 |
+
<td>LLaMA</td>
|
87 |
+
<td colspan="4">coming soon</td>
|
88 |
+
</tr>
|
89 |
+
|
90 |
+
|
91 |
+
</tbody>
|
92 |
+
</table>
|
93 |
+
|
94 |
+
|
95 |
+
## Use
|
96 |
+
|
97 |
+
### Intended use
|
98 |
+
We recommend using the model to respond to human instructions written in natural language.
|
99 |
+
Since this decoder-only model is fine-tuned with wrapper text, we suggest using the same wrapper text to achieve the best performance.
|
100 |
+
See the example on the right or the code below.
|
101 |
+
|
102 |
+
We now show you how to load and use our model using HuggingFace `pipline()`.
|
103 |
+
|
104 |
+
```python
|
105 |
+
# pip install -q transformers
|
106 |
+
from transformers import pipeline
|
107 |
+
|
108 |
+
checkpoint = "{model_name}"
|
109 |
+
|
110 |
+
model = pipeline('text-generation', model=checkpoint, use_auth_token=True)
|
111 |
+
|
112 |
+
instruction = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
|
113 |
+
|
114 |
+
input_prompt = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
|
115 |
+
|
116 |
+
generated_text = generator(input_prompt, max_length=512, do_sample=True)[0]['generated_text']
|
117 |
+
|
118 |
+
print("Response": generated_text)
|
119 |
+
```
|
120 |
+
|
121 |
+
## Training Procedure
|
122 |
+
|
123 |
+
<p align="center" width="100%">
|
124 |
+
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a>
|
125 |
+
</p>
|
126 |
+
|
127 |
+
We initialize with [cerebras/Cerebras-GPT-256M](https://huggingface.co/cerebras/Cerebras-GPT-256M) and fine-tune it on our [LaMini dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 77M.
|
128 |
+
|
129 |
+
### Training Hyperparameters
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
## Evaluation
|
134 |
+
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper]().
|
135 |
+
|
136 |
+
## Limitations
|
137 |
+
|
138 |
+
More information needed
|
139 |
+
|
140 |
+
|
141 |
+
# Citation
|
142 |
+
|
143 |
+
```bibtex
|
144 |
+
@misc{lamini,
|
145 |
+
title={LaMini: A Diverse Herd of Distilled Models from Large-Scale Instructions},
|
146 |
+
author={},
|
147 |
+
year={2023},
|
148 |
+
publisher = {GitHub},
|
149 |
+
journal = {GitHub repository},
|
150 |
+
}
|
151 |
+
```
|