|
|
|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
language: |
|
- multilingual |
|
tags: |
|
- generation |
|
- question answering |
|
- instruction tuning |
|
datasets: |
|
- MBZUAI/Bactrian-X |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
### Model Description |
|
|
|
This HF repository hosts instruction fine-tuned multilingual BLOOM model using the parallel instruction dataset called Bactrain-X in 52 languages. |
|
We progressively add a language during instruction fine-tuning at each time, and train 52 models in total. Then, we evaluate those models in three multilingual benchmarks. |
|
|
|
Please refer to [our paper](https://arxiv.org/abs/2404.04850) for more details. |
|
|
|
* Base model: [BLOOM 7B1](https://huggingface.co/bigscience/bloom-7b1) |
|
* Instruction languages: English, Chinese, Afrikaans, Arabic, Azerbaijani, Bengali, Czech, German, Spanish, Estonian, Farsi, Finnish, French, Galician, Gujarati, Hebrew, Hindi, Croatian, Indonesian, Italian, Japanese, Georgian, Kazakh, Khmer, Korean, Lithuanian, Latvian, Macedonian, Malayalam, Mongolian, Marathi, Burmese, Nepali, Dutch, Polish, Pashto, Portuguese, Romanian, Russian, Sinhala, Slovenian, Swedish, Swahili, Tamil, Telugu, Thai, Tagalog, Turkish |
|
* Instruction language codes: en, zh, af, ar, az, bn, cs, de, es, et, fa, fi, fr, gl, gu, he, hi, hr, id, it, ja, ka, kk, km, ko, lt, lv, mk, ml, mn, mr, my, ne, nl, pl, ps, pt, ro, ru, si, sl, sv, sw, ta, te, th, tl, tr |
|
* Training method: full-parameter fine-tuning. |
|
|
|
### Usage |
|
The model checkpoint should be loaded using `transformers` library. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-48") |
|
model = AutoModelForCausalLM.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-48") |
|
``` |
|
|
|
### Citation |
|
``` |
|
@misc{lucky52, |
|
title = "Lucky 52: How Many Languages Are Needed to Instruction Fine-Tune Large Language Models?", |
|
author = "Shaoxiong Ji and Pinzhen Chen", |
|
year = "2024", |
|
eprint = "2404.04850", |
|
archiveprefix = "arXiv", |
|
primaryclass = "cs.CL" |
|
} |
|
``` |
|
|
|
|