File size: 3,327 Bytes
2a3f6b2 0151d07 2a3f6b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: cc-by-nc-4.0
language:
- en
pipeline_tag: depth-estimation
tags:
- depth
- relative depth
---
# Depth-Anything-V2-Large (Transformers version)
## Introduction
Depth Anything V2 is trained from 595K synthetic labeled images & 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features:
- more fine-grained details than Depth Anything V1
- more robust than Depth Anything V1 & SD-based models (e.g., Marigold, Geowizard)
- more efficient (10x faster) & more lightweight than SD-based models
- impressive fine-tuned performance with our pre-trained models
## Installation
```bash
git clone https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2.git
cd Upgraded-Depth-Anything-V2
one_click_install.bat
```
## Usage
Please refer to the [README.md](https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2/blob/main/README.md) for actual usage.
## Test Code
```bash
cd Upgraded-Depth-Anything-V2
venv\scripts\activate
python test.py /path/to/your/image.jpg (or .png)
```
Create a test.py script using the code below:
```python
import cv2
import torch
import numpy as np
import os
import argparse
from safetensors.torch import load_file
from depth_anything_v2.dpt import DepthAnythingV2
# Argument parser for input image path
parser = argparse.ArgumentParser(description="Depth map inference using DepthAnythingV2 model.")
parser.add_argument("input_image_path", type=str, help="Path to the input image")
args = parser.parse_args()
# Determine the directory of this script
script_dir = os.path.dirname(os.path.abspath(__file__))
# Set output path relative to the script directory
output_image_path = os.path.join(script_dir, "base_udav2_hf-code-test.png")
checkpoint_path = os.path.join(script_dir, "checkpoints", "depth_anything_v2_vitl.safetensors")
# Device selection: CUDA, MPS, or CPU
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024])
state_dict = load_file(checkpoint_path, device='cpu')
model.load_state_dict(state_dict)
model.to(device)
model.eval()
# Load the input image
raw_img = cv2.imread(args.input_image_path)
# Infer the depth map
depth = model.infer_image(raw_img) # HxW raw depth map
# Normalize the depth map to 0-255 for saving as an image
depth_normalized = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX)
depth_normalized = depth_normalized.astype(np.uint8)
cv2.imwrite(output_image_path, depth_normalized)
print(f"Depth map saved at {output_image_path}")
```
## Citation
If you find this project useful, please consider citing [MackinationsAi](https://github.com/MackinationsAi/) & the following:
```bibtex
@article{depth_anything_v2,
title={Depth Anything V2},
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Zhao, Zhen & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang},
journal={arXiv:2406.09414},
year={2024}
}
@inproceedings{depth_anything_v1,
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang},
booktitle={CVPR},
year={2024}
} |