|
|
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
from typing import Optional |
|
import warnings |
|
|
|
from michelangelo.models.modules.checkpoint import checkpoint |
|
|
|
|
|
def _trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are |
|
applied while sampling the normal with mean/std applied, therefore a, b args |
|
should be adjusted to match the range of mean, std args. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
with torch.no_grad(): |
|
return _trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
def init_weights(m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
n_ctx: int, |
|
width: int, |
|
heads: int, |
|
qkv_bias: bool |
|
): |
|
super().__init__() |
|
self.n_ctx = n_ctx |
|
self.width = width |
|
self.heads = heads |
|
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype) |
|
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype) |
|
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx) |
|
|
|
def forward(self, x): |
|
x = self.c_qkv(x) |
|
x = checkpoint(self.attention, (x,), (), True) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class QKVMultiheadAttention(nn.Module): |
|
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int): |
|
super().__init__() |
|
self.device = device |
|
self.dtype = dtype |
|
self.heads = heads |
|
self.n_ctx = n_ctx |
|
|
|
def forward(self, qkv): |
|
bs, n_ctx, width = qkv.shape |
|
attn_ch = width // self.heads // 3 |
|
scale = 1 / math.sqrt(attn_ch) |
|
qkv = qkv.view(bs, n_ctx, self.heads, -1) |
|
q, k, v = torch.split(qkv, attn_ch, dim=-1) |
|
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale |
|
wdtype = weight.dtype |
|
weight = torch.softmax(weight.float(), dim=-1).type(wdtype) |
|
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
n_ctx: int, |
|
width: int, |
|
heads: int, |
|
qkv_bias: bool = True, |
|
use_checkpoint: bool = False |
|
): |
|
super().__init__() |
|
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
self.attn = MultiheadAttention( |
|
device=device, |
|
dtype=dtype, |
|
n_ctx=n_ctx, |
|
width=width, |
|
heads=heads, |
|
qkv_bias=qkv_bias |
|
) |
|
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype) |
|
self.mlp = MLP(device=device, dtype=dtype, width=width) |
|
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype) |
|
|
|
def _forward(self, x: torch.Tensor): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
def forward(self, x: torch.Tensor): |
|
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint) |
|
|
|
|
|
class MultiheadCrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
width: int, |
|
heads: int, |
|
qkv_bias: bool = True, |
|
n_data: Optional[int] = None, |
|
data_width: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.n_data = n_data |
|
self.width = width |
|
self.heads = heads |
|
self.data_width = width if data_width is None else data_width |
|
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype) |
|
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype) |
|
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype) |
|
self.attention = QKVMultiheadCrossAttention( |
|
device=device, dtype=dtype, heads=heads, n_data=n_data |
|
) |
|
|
|
def forward(self, x, data): |
|
x = self.c_q(x) |
|
data = self.c_kv(data) |
|
x = checkpoint(self.attention, (x, data), (), True) |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class QKVMultiheadCrossAttention(nn.Module): |
|
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: Optional[int] = None): |
|
super().__init__() |
|
self.device = device |
|
self.dtype = dtype |
|
self.heads = heads |
|
self.n_data = n_data |
|
|
|
def forward(self, q, kv): |
|
_, n_ctx, _ = q.shape |
|
bs, n_data, width = kv.shape |
|
attn_ch = width // self.heads // 2 |
|
scale = 1 / math.sqrt(attn_ch) |
|
q = q.view(bs, n_ctx, self.heads, -1) |
|
kv = kv.view(bs, n_data, self.heads, -1) |
|
k, v = torch.split(kv, attn_ch, dim=-1) |
|
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale |
|
wdtype = weight.dtype |
|
weight = torch.softmax(weight.float(), dim=-1).type(wdtype) |
|
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1) |
|
|
|
|
|
class ResidualCrossAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
device: Optional[torch.device], |
|
dtype: Optional[torch.dtype], |
|
n_data: Optional[int] = None, |
|
width: int, |
|
heads: int, |
|
data_width: Optional[int] = None, |
|
qkv_bias: bool = True |
|
): |
|
super().__init__() |
|
|
|
if data_width is None: |
|
data_width = width |
|
|
|
self.attn = MultiheadCrossAttention( |
|
device=device, |
|
dtype=dtype, |
|
n_data=n_data, |
|
width=width, |
|
heads=heads, |
|
data_width=data_width, |
|
qkv_bias=qkv_bias |
|
) |
|
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype) |
|
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype) |
|
self.mlp = MLP(device=device, dtype=dtype, width=width) |
|
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype) |
|
|
|
def forward(self, x: torch.Tensor, data: torch.Tensor): |
|
x = x + self.attn(self.ln_1(x), self.ln_2(data)) |
|
x = x + self.mlp(self.ln_3(x)) |
|
return x |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, *, |
|
device: Optional[torch.device], |
|
dtype: Optional[torch.dtype], |
|
width: int): |
|
super().__init__() |
|
self.width = width |
|
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype) |
|
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype) |
|
self.gelu = nn.GELU() |
|
|
|
def forward(self, x): |
|
return self.c_proj(self.gelu(self.c_fc(x))) |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
device: Optional[torch.device], |
|
dtype: Optional[torch.dtype], |
|
n_ctx: int, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
qkv_bias: bool = True, |
|
use_checkpoint: bool = False |
|
): |
|
super().__init__() |
|
self.n_ctx = n_ctx |
|
self.width = width |
|
self.layers = layers |
|
self.resblocks = nn.ModuleList( |
|
[ |
|
ResidualAttentionBlock( |
|
device=device, |
|
dtype=dtype, |
|
n_ctx=n_ctx, |
|
width=width, |
|
heads=heads, |
|
qkv_bias=qkv_bias, |
|
use_checkpoint=use_checkpoint |
|
) |
|
for _ in range(layers) |
|
] |
|
) |
|
|
|
self.apply(init_weights) |
|
|
|
def forward(self, x: torch.Tensor): |
|
for block in self.resblocks: |
|
x = block(x) |
|
return x |
|
|