metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: ./7326
results: []
./7326
This model is a fine-tuned version of openai/whisper-large-v3 on the 7326 FULL-2024-10-24 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3906
- Wer Ortho: 22.5859
- Wer: 15.5145
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 1400
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.6841 | 0.4851 | 200 | 0.4590 | 25.7036 | 18.3842 |
0.5245 | 0.9703 | 400 | 0.4204 | 24.1509 | 16.9945 |
0.4305 | 1.4554 | 600 | 0.4028 | 23.1144 | 15.9502 |
0.4039 | 1.9406 | 800 | 0.3940 | 23.1431 | 16.0444 |
0.3567 | 2.4257 | 1000 | 0.3943 | 22.6269 | 15.6754 |
0.3391 | 2.9109 | 1200 | 0.3904 | 22.5900 | 15.5459 |
0.317 | 3.3960 | 1400 | 0.3906 | 22.5859 | 15.5145 |
Framework versions
- Transformers 4.45.1
- Pytorch 1.13.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0