./600

This model is a fine-tuned version of openai/whisper-medium.en on the 600 SF 1000 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6509
  • Wer Ortho: 30.9402
  • Wer: 20.0933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.6008 2.6667 100 1.0986 41.0350 29.9605
0.8522 5.3333 200 0.7925 32.0335 21.0621
0.6516 8.0 300 0.7207 30.5029 19.9856
0.5337 10.6667 400 0.6885 30.5758 20.3803
0.4489 13.3333 500 0.6709 31.0496 20.3086
0.4003 16.0 600 0.6577 31.0496 20.2727
0.3588 18.6667 700 0.6533 31.0496 20.0933
0.3499 21.3333 800 0.6509 30.9402 20.0933

Framework versions

  • Transformers 4.44.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
817M params
Tensor type
FP16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Makkoen/whisper-medium.en-cit-do015-wd0-lr1e-06-SF-600

Finetuned
(23)
this model