./800

This model is a fine-tuned version of openai/whisper-medium.en on the 800 SF 1000 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6191
  • Wer Ortho: 30.5394
  • Wer: 20.0215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.2835 2.0 100 0.7681 30.5758 19.3039
0.5883 4.0 200 0.6235 27.6968 17.5099
0.3246 6.0 300 0.5332 29.4461 19.6268
0.1851 8.0 400 0.5366 34.6574 23.3226
0.1133 10.0 500 0.5747 29.9198 19.0886
0.0837 12.0 600 0.5947 30.1020 19.9498
0.0697 14.0 700 0.6128 30.3571 20.4521
0.0622 16.0 800 0.6191 30.5394 20.0215

Framework versions

  • Transformers 4.44.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
817M params
Tensor type
FP16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Makkoen/whisper-medium.en-cit-do015-wd0-lr3e-06-SF-800

Finetuned
(23)
this model