./1000

This model is a fine-tuned version of openai/whisper-medium.en on the 1000 SF 1000 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6318
  • Wer Ortho: 32.5802
  • Wer: 21.4926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.1316 1.7699 100 0.6968 29.0816 18.8733
0.4669 3.5398 200 0.5156 27.4417 17.5816
0.2075 5.3097 300 0.5303 27.6968 16.7205
0.1163 7.0796 400 0.5391 28.6443 17.8687
0.0712 8.8496 500 0.5811 28.9723 17.5816
0.0518 10.6195 600 0.6104 31.8513 21.2415
0.0388 12.3894 700 0.6245 32.4344 21.4926
0.034 14.1593 800 0.6318 32.5802 21.4926

Framework versions

  • Transformers 4.44.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
817M params
Tensor type
FP16
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Makkoen/whisper-medium.en-cit-do015-wd0-lr5e-06-SF-1000

Finetuned
(23)
this model