Edit model card

PhysicalScienceBARTMainSections

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2611
  • Rouge1: 53.3257
  • Rouge2: 19.9372
  • Rougel: 38.7516
  • Rougelsum: 49.5491
  • Bertscore Precision: 82.9683
  • Bertscore Recall: 84.3765
  • Bertscore F1: 83.6629
  • Bleu: 0.1444
  • Gen Len: 195.4093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bertscore Precision Bertscore Recall Bertscore F1 Bleu Gen Len
6.0567 0.0622 100 5.9024 44.7542 14.8626 32.3438 41.6627 79.6577 81.9972 80.8049 0.1058 195.4093
5.628 0.1244 200 5.5009 44.7374 15.4406 32.7203 41.5684 79.7952 82.4154 81.0775 0.1106 195.4093
5.3608 0.1866 300 5.2016 47.9813 16.6932 34.1908 44.4923 80.6116 82.8487 81.709 0.1189 195.4093
5.1172 0.2489 400 5.0247 49.6117 17.0694 35.1947 46.0939 81.4181 83.2142 82.3018 0.1228 195.4093
5.1058 0.3111 500 4.8769 49.7791 17.282 35.3202 45.4459 80.9748 83.2981 82.1135 0.1250 195.4093
4.9831 0.3733 600 4.7486 49.7885 17.5964 36.1885 46.1291 81.8182 83.5683 82.6792 0.1263 195.4093
4.7239 0.4355 700 4.6365 49.9977 18.0061 36.4943 46.3477 81.7979 83.6503 82.7089 0.1299 195.4093
4.6893 0.4977 800 4.5773 51.7141 18.7056 37.2897 48.1051 82.4355 83.9204 83.1676 0.1347 195.4093
4.641 0.5599 900 4.5179 51.337 18.6106 37.3188 47.6183 82.1666 83.9203 83.0297 0.1355 195.4093
4.4518 0.6222 1000 4.4457 52.5898 18.9865 37.7363 48.9758 82.5619 84.028 83.2849 0.1363 195.4093
4.4246 0.6844 1100 4.4001 52.5771 19.1928 37.92 48.9098 82.5426 84.0673 83.2942 0.1392 195.4093
4.549 0.7466 1200 4.3539 52.3117 19.2452 38.0721 48.7304 82.7547 84.1096 83.4232 0.1383 195.4093
4.3528 0.8088 1300 4.3296 52.5899 19.6953 38.3709 48.8248 82.7757 84.2642 83.5094 0.1424 195.4093
4.3692 0.8710 1400 4.2972 53.2821 19.763 38.4702 49.3072 82.9332 84.4115 83.6622 0.1434 195.4093
4.2056 0.9332 1500 4.2795 53.4962 19.9871 38.7098 49.5905 83.0029 84.4307 83.7072 0.1449 195.4093
4.3956 0.9955 1600 4.2611 53.3257 19.9372 38.7516 49.5491 82.9683 84.3765 83.6629 0.1444 195.4093

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MarPla/PhysicalScienceBARTMainSections

Finetuned
(295)
this model