metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: PhysicalScienceBARTPrincipal
results: []
PhysicalScienceBARTPrincipal
This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.5862
- Rouge1: 49.7214
- Rouge2: 15.9205
- Rougel: 34.8099
- Rougelsum: 45.9442
- Bertscore Precision: 81.8626
- Bertscore Recall: 83.3072
- Bertscore F1: 82.5744
- Bleu: 0.1065
- Gen Len: 196.3779
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | Bleu | Gen Len |
---|---|---|---|---|---|---|---|---|---|---|---|---|
6.4881 | 0.0620 | 100 | 6.2790 | 38.9402 | 10.9737 | 28.0473 | 36.4124 | 78.6712 | 80.7927 | 79.7123 | 0.0702 | 196.3779 |
5.9838 | 0.1239 | 200 | 5.8574 | 39.6094 | 11.61 | 28.6653 | 36.6426 | 78.5563 | 81.2374 | 79.8672 | 0.0773 | 196.3779 |
5.5757 | 0.1859 | 300 | 5.5425 | 43.235 | 12.5595 | 30.3069 | 40.1431 | 79.7016 | 81.7103 | 80.6878 | 0.0826 | 196.3779 |
5.4752 | 0.2478 | 400 | 5.3518 | 45.0647 | 13.1878 | 31.0925 | 41.4826 | 79.7122 | 82.0455 | 80.8554 | 0.0880 | 196.3779 |
5.3711 | 0.3098 | 500 | 5.2193 | 47.1793 | 13.5223 | 31.7989 | 43.5774 | 80.6424 | 82.3476 | 81.4813 | 0.0892 | 196.3779 |
5.1653 | 0.3717 | 600 | 5.0858 | 45.2081 | 13.4909 | 31.8919 | 41.7813 | 80.7104 | 82.4561 | 81.5689 | 0.0897 | 196.3779 |
5.0684 | 0.4337 | 700 | 4.9837 | 46.4035 | 14.2034 | 32.654 | 42.8883 | 80.4628 | 82.4529 | 81.4399 | 0.0941 | 196.3779 |
4.9625 | 0.4957 | 800 | 4.9084 | 48.2088 | 14.8904 | 33.2025 | 44.5397 | 81.1668 | 82.8469 | 81.9935 | 0.0986 | 196.3779 |
4.8858 | 0.5576 | 900 | 4.8370 | 48.5919 | 14.7721 | 33.5041 | 44.7923 | 81.2656 | 82.8635 | 82.0522 | 0.0974 | 196.3779 |
4.8251 | 0.6196 | 1000 | 4.7813 | 49.2512 | 15.4584 | 34.0164 | 45.5215 | 81.4958 | 83.0067 | 82.2398 | 0.1030 | 196.3779 |
4.8581 | 0.6815 | 1100 | 4.7307 | 48.7203 | 15.379 | 34.0451 | 45.0395 | 81.7154 | 83.106 | 82.4008 | 0.1027 | 196.3779 |
4.7934 | 0.7435 | 1200 | 4.6861 | 49.5987 | 15.6207 | 34.3261 | 45.8512 | 81.7656 | 83.1546 | 82.4502 | 0.1042 | 196.3779 |
4.7163 | 0.8055 | 1300 | 4.6518 | 48.9818 | 15.5333 | 34.3788 | 45.3444 | 81.6763 | 83.1451 | 82.3998 | 0.1039 | 196.3779 |
4.6855 | 0.8674 | 1400 | 4.6199 | 49.1462 | 15.5914 | 34.5149 | 45.5788 | 81.7027 | 83.1199 | 82.401 | 0.1037 | 196.3779 |
4.615 | 0.9294 | 1500 | 4.5987 | 49.6903 | 15.8973 | 34.7628 | 45.9111 | 81.8545 | 83.302 | 82.5678 | 0.1064 | 196.3779 |
4.5964 | 0.9913 | 1600 | 4.5862 | 49.7214 | 15.9205 | 34.8099 | 45.9442 | 81.8626 | 83.3072 | 82.5744 | 0.1065 | 196.3779 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1