Edit model card

Titanic (Survived/Not Survived) - Binary Classification

How to use

from huggingface_hub import hf_hub_url, cached_download
import joblib
import pandas as pd
import numpy as np
from tensorflow.keras.models import load_model

REPO_ID = 'danupurnomo/dummy-titanic'
PIPELINE_FILENAME = 'final_pipeline.pkl'
TF_FILENAME = 'titanic_model.h5'

model_pipeline = joblib.load(cached_download(
    hf_hub_url(REPO_ID, PIPELINE_FILENAME)
))

model_seq = load_model(cached_download(
    hf_hub_url(REPO_ID, TF_FILENAME)
))

Example A New Data

new_data = {
    'PassengerId': 1191,
    'Pclass': 1, 
    'Name': 'Sherlock Holmes', 
    'Sex': 'male', 
    'Age': 30, 
    'SibSp': 0,
    'Parch': 0, 
    'Ticket': 'C.A.29395', 
    'Fare': 12, 
    'Cabin': 'F44', 
    'Embarked': 'S'
}
new_data = pd.DataFrame([new_data])

Transform Inference-Set

new_data_transform = model_pipeline.transform(new_data)

Predict using Neural Networks

y_pred_inf_single = model_seq.predict(new_data_transform)
y_pred_inf_single = np.where(y_pred_inf_single >= 0.5, 1, 0)
print('Result : ', y_pred_inf_single)
# [[0]]
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.