Marcos12886's picture
End of training
27ea11b verified
|
raw
history blame
2.49 kB
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-donateacry
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8369565217391305
          - name: F1
            type: f1
            value: 0.7626704399279649
          - name: Precision
            type: precision
            value: 0.7004962192816635
          - name: Recall
            type: recall
            value: 0.8369565217391305

distilhubert-finetuned-donateacry

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6676
  • Accuracy: 0.8370
  • F1: 0.7627
  • Precision: 0.7005
  • Recall: 0.8370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.8696 5 0.7413 0.8370 0.7627 0.7005 0.8370
No log 1.9130 11 0.6653 0.8370 0.7627 0.7005 0.8370
No log 2.9565 17 0.6791 0.8370 0.7627 0.7005 0.8370
No log 4.0 23 0.6676 0.8370 0.7627 0.7005 0.8370

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1