|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: ntu-spml/distilhubert
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- audiofolder
|
|
model-index:
|
|
- name: distilhubert-finetuned-donateacry
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# distilhubert-finetuned-donateacry
|
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.001
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 8
|
|
- total_train_batch_size: 64
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: cosine
|
|
- lr_scheduler_warmup_ratio: 0.001
|
|
- num_epochs: 1
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
|
| No log | 0.9032 | 7 | 1.0438 | 0.7317 | 0.6183 | 0.5354 | 0.7317 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.44.2
|
|
- Pytorch 2.4.0+cu118
|
|
- Datasets 2.21.0
|
|
- Tokenizers 0.19.1
|
|
|