distilbert-base-uncased-finetuned-legal_data
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.9101
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 26 | 5.3529 |
No log | 2.0 | 52 | 5.4226 |
No log | 3.0 | 78 | 5.2550 |
No log | 4.0 | 104 | 5.1011 |
No log | 5.0 | 130 | 5.1857 |
No log | 6.0 | 156 | 5.5119 |
No log | 7.0 | 182 | 5.4480 |
No log | 8.0 | 208 | 5.6993 |
No log | 9.0 | 234 | 5.9614 |
No log | 10.0 | 260 | 5.6987 |
No log | 11.0 | 286 | 5.6679 |
No log | 12.0 | 312 | 5.9850 |
No log | 13.0 | 338 | 5.6065 |
No log | 14.0 | 364 | 5.3162 |
No log | 15.0 | 390 | 5.7856 |
No log | 16.0 | 416 | 5.5786 |
No log | 17.0 | 442 | 5.6028 |
No log | 18.0 | 468 | 5.7649 |
No log | 19.0 | 494 | 5.5382 |
1.8345 | 20.0 | 520 | 6.3654 |
1.8345 | 21.0 | 546 | 5.3575 |
1.8345 | 22.0 | 572 | 5.3808 |
1.8345 | 23.0 | 598 | 5.9340 |
1.8345 | 24.0 | 624 | 6.1475 |
1.8345 | 25.0 | 650 | 6.2188 |
1.8345 | 26.0 | 676 | 5.7651 |
1.8345 | 27.0 | 702 | 6.2629 |
1.8345 | 28.0 | 728 | 6.1356 |
1.8345 | 29.0 | 754 | 5.9255 |
1.8345 | 30.0 | 780 | 6.4252 |
1.8345 | 31.0 | 806 | 5.6967 |
1.8345 | 32.0 | 832 | 6.4324 |
1.8345 | 33.0 | 858 | 6.5087 |
1.8345 | 34.0 | 884 | 6.1113 |
1.8345 | 35.0 | 910 | 6.7443 |
1.8345 | 36.0 | 936 | 6.6970 |
1.8345 | 37.0 | 962 | 6.5578 |
1.8345 | 38.0 | 988 | 6.1963 |
0.2251 | 39.0 | 1014 | 6.4893 |
0.2251 | 40.0 | 1040 | 6.6347 |
0.2251 | 41.0 | 1066 | 6.7106 |
0.2251 | 42.0 | 1092 | 6.8129 |
0.2251 | 43.0 | 1118 | 6.6386 |
0.2251 | 44.0 | 1144 | 6.4134 |
0.2251 | 45.0 | 1170 | 6.6883 |
0.2251 | 46.0 | 1196 | 6.6406 |
0.2251 | 47.0 | 1222 | 6.3065 |
0.2251 | 48.0 | 1248 | 7.0281 |
0.2251 | 49.0 | 1274 | 7.3646 |
0.2251 | 50.0 | 1300 | 7.1086 |
0.2251 | 51.0 | 1326 | 6.4749 |
0.2251 | 52.0 | 1352 | 6.3303 |
0.2251 | 53.0 | 1378 | 6.2919 |
0.2251 | 54.0 | 1404 | 6.3855 |
0.2251 | 55.0 | 1430 | 6.9501 |
0.2251 | 56.0 | 1456 | 6.8714 |
0.2251 | 57.0 | 1482 | 6.9856 |
0.0891 | 58.0 | 1508 | 6.9910 |
0.0891 | 59.0 | 1534 | 6.9293 |
0.0891 | 60.0 | 1560 | 7.3493 |
0.0891 | 61.0 | 1586 | 7.1834 |
0.0891 | 62.0 | 1612 | 7.0479 |
0.0891 | 63.0 | 1638 | 6.7674 |
0.0891 | 64.0 | 1664 | 6.7553 |
0.0891 | 65.0 | 1690 | 7.3074 |
0.0891 | 66.0 | 1716 | 6.8071 |
0.0891 | 67.0 | 1742 | 7.6622 |
0.0891 | 68.0 | 1768 | 6.9555 |
0.0891 | 69.0 | 1794 | 7.0153 |
0.0891 | 70.0 | 1820 | 7.2085 |
0.0891 | 71.0 | 1846 | 6.7582 |
0.0891 | 72.0 | 1872 | 6.7989 |
0.0891 | 73.0 | 1898 | 6.7012 |
0.0891 | 74.0 | 1924 | 7.0088 |
0.0891 | 75.0 | 1950 | 7.1024 |
0.0891 | 76.0 | 1976 | 6.6968 |
0.058 | 77.0 | 2002 | 7.5249 |
0.058 | 78.0 | 2028 | 6.9199 |
0.058 | 79.0 | 2054 | 7.1995 |
0.058 | 80.0 | 2080 | 6.9349 |
0.058 | 81.0 | 2106 | 7.4025 |
0.058 | 82.0 | 2132 | 7.4199 |
0.058 | 83.0 | 2158 | 6.8081 |
0.058 | 84.0 | 2184 | 7.4777 |
0.058 | 85.0 | 2210 | 7.1990 |
0.058 | 86.0 | 2236 | 7.0062 |
0.058 | 87.0 | 2262 | 7.5724 |
0.058 | 88.0 | 2288 | 6.9362 |
0.058 | 89.0 | 2314 | 7.1368 |
0.058 | 90.0 | 2340 | 7.2183 |
0.058 | 91.0 | 2366 | 6.8684 |
0.058 | 92.0 | 2392 | 7.1433 |
0.058 | 93.0 | 2418 | 7.2161 |
0.058 | 94.0 | 2444 | 7.1442 |
0.058 | 95.0 | 2470 | 7.3098 |
0.058 | 96.0 | 2496 | 7.1264 |
0.0512 | 97.0 | 2522 | 6.9424 |
0.0512 | 98.0 | 2548 | 6.9155 |
0.0512 | 99.0 | 2574 | 6.9038 |
0.0512 | 100.0 | 2600 | 6.9101 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.