Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
fine_tuned_sample
This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1041
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6485 | 1.0 | 5402 | 0.5418 |
0.5557 | 2.0 | 10804 | 0.4748 |
0.5101 | 3.0 | 16206 | 0.4412 |
0.4486 | 4.0 | 21608 | 0.3602 |
0.376 | 5.0 | 27010 | 0.2766 |
0.2681 | 6.0 | 32412 | 0.2018 |
0.2328 | 7.0 | 37814 | 0.1420 |
0.1482 | 8.0 | 43216 | 0.1041 |
Framework versions
- PEFT 0.13.3.dev0
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for Masternlp/fine_tuned_sample
Base model
openai/whisper-large-v2