AIVIZ / algos /regression /elasticnet.py
MatthiasPi's picture
commit the whole project
a3171a2
from sklearn.linear_model import ElasticNet
import streamlit as st
from types import NoneType
def process(data):
if type(data[0]) == NoneType or type(data[1]) == NoneType: # if either training or testing dataset is still missing
st.info('Please Upload Data')
return None
if 'object' in list(data[0].dtypes) or 'object' in list(data[1].dtypes):
st.info('Please Upload Numerica Data.')
return None
if len(data) == 0:
st.info('Please Upload Data')
return None
x_train = data[0].iloc[:,:-1]
y_train = data[0].iloc[:,-1]
#st.write(x_train.shape)
x_test = data[1].iloc[:,:x_train.shape[1]]
#st.dataframe(data[1])
#st.write(x_test.shape)
if len(x_train.columns) != len(x_test.columns):
st.info('Training and testing datasets have different column number, cannot perform classification.')
return None
clf = ElasticNet().fit(x_train, y_train)
pred = clf.predict(x_test)
cols = x_train.columns
#st.write(clf.coef_)
st.latex(f" {x_train.columns[-1]} = ")
coeffs = ['{:.4f}'.format(float(c)) for c in clf.coef_]
#st.write(coeffs)
eq = ' + '.join([str(col) +' × '+ (alpha) for col,alpha in zip(coeffs,cols)])
st.markdown(f" $$ {clf.intercept_} {eq} $$")
st.latex(f" R² = {clf.score(x_train, y_train)} ")
x_test[data[0].columns[-1]] = pred
return x_test