File size: 7,978 Bytes
ffd9d26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Notebook to test WAR performances on a fully labelled dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import itertools\n",
    "import time\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import torch\n",
    "import torch.optim as optim\n",
    "\n",
    "from WAR.Models import NN_phi,NN_h_RELU\n",
    "from WAR.training_and_query import WAR\n",
    "from WAR.dataset_handler import myData,import_dataset,get_dataset\n",
    "from WAR.Experiment_functions import *\n",
    "from WAR.full_training_process import full_training,check_num_round\n",
    "from sklearn.cluster import KMeans\n",
    "\n",
    "from sklearn.decomposition import PCA\n",
    "\n",
    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
    "print(f\"Using {device} device\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "#choosing dataset and splitting it with the desired testset proportion\n",
    "# for now dataset=\n",
    "#\"boston\",\"airfoil\",\"energy1\",\"energy2\",\"yacht\"\n",
    "#,\"concrete_slump\",\"concrete_flow\",\"concrete_compressive\",x_squared\",\"news_popularity\"\n",
    "\n",
    "X_train,X_test,y_train,y_test=get_dataset(proportion=0.2,dataset=\"boston\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#2D PCA visualization of the data\n",
    "#kmeans = KMeans(n_clusters=nb_initial_labelled_datas, init='k-means++', n_init=10).fit_predict(X_train)\n",
    "pca = PCA(n_components=2)\n",
    "transformed = pca.fit_transform(X=X_train)\n",
    "print(f\"{round(sum(pca.explained_variance_),4)*100}% variance explained\")\n",
    "plt.figure(figsize=(8.5, 6))\n",
    "plt.scatter(x=transformed[:, 0], y=transformed[:, 1]#,c=kmeans\n",
    "           )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# WAR"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "total_epoch_h=100 # number of epochs to train h each round\n",
    "total_epoch_phi=100 # number of epochs to train phi each round \n",
    "num_elem_queried= int(0.02*X_train.shape[0]) # number of elem queried each round  \n",
    "nb_initial_labelled_datas = int(0.02*X_train.shape[0]) #nb of labelled datas at round 0\n",
    "init_method=\"k_mean\" # how the initial data will be chosen. \"random\" or \"k-means\" \n",
    "second_query_strategy=\"loss_approximation\" # query strategy assisting our distribution-matching criterion. \"loss_approximation\" or None for now\n",
    "lr_h=0.001  # learning rate h \n",
    "lr_phi=0.01  # learning rate phi  \n",
    "weight_decay=0.001 # L2 regularization on h\n",
    "\n",
    "batch_size_train=len(X_train) # size of the batch during the training process  #len(X_train)\n",
    "num_round=500  # number of rounds\n",
    "num_round=check_num_round(num_round,len(y_train),nb_initial_labelled_datas,num_elem_queried)\n",
    "\n",
    "\n",
    "reset_phi=False  # reset the training of phi each round or not\n",
    "reset_h=False  # reset the training of h each round or not\n",
    "\n",
    "reduced=True  # if true (recommended),\n",
    "#the heterogeneity and representativity criteria will have the same standard deviation,\n",
    "#to give them the same weight in the query process. This give us more control on our querying strategy\n",
    "\n",
    "eta=3   # weight of the representativity criterion. if relatively low (<3) can lead WAR to query too many outliers\n",
    "# cnst_t3phi>3 recommended, can be put higher if there are a lot of outliers in the data distribution \n",
    "\n",
    "show_losses=False   # show T1 and T2 losses each rounds in a graph\n",
    "show_chosen_each_round=False   # show which data have been chosen each round in a 2D PCA representation of the data\n",
    "\n",
    "dim_input=X_train.shape[1]\n",
    "\n",
    "start=time.time()\n",
    "\n",
    "n_pool = len(y_train)\n",
    "n_test = len(y_test)\n",
    "idxs_lb = np.zeros(n_pool, dtype=bool)\n",
    "idxs_tmp = np.arange(n_pool)\n",
    "\n",
    "\n",
    "if init_method==\"random\":\n",
    "    # Generate the initial labeled pool\n",
    "    np.random.shuffle(idxs_tmp)\n",
    "    idxs_lb[idxs_tmp[:nb_initial_labelled_datas]] = True\n",
    "    \n",
    "elif init_method==\"k_mean\":\n",
    "    init_indices=[]\n",
    "    kmeans = KMeans(n_clusters=nb_initial_labelled_datas, init='k-means++', n_init=10).fit(X_train)\n",
    "    for i in range(nb_initial_labelled_datas):\n",
    "        xsc = kmeans.cluster_centers_[i]\n",
    "        ind = np.argmin(((X_train - xsc) ** 2).sum(axis=1))\n",
    "        init_indices.append(ind)\n",
    "    idxs_lb[init_indices] = True\n",
    "\n",
    "h=NN_h_RELU(dim_input)\n",
    "opti_h = optim.Adam(h.parameters(), lr=lr_h,weight_decay=weight_decay)\n",
    "\n",
    "phi=NN_phi(dim_input)\n",
    "opti_phi = optim.Adam(phi.parameters(), lr=lr_phi,maximize=True)\n",
    "\n",
    "strategy = WAR(X_train,y_train,X_test,y_test,idxs_lb,total_epoch_h,total_epoch_phi,batch_size_train,num_elem_queried,phi\n",
    "                ,h,opti_phi,opti_h,second_query_strategy)\n",
    "    \n",
    "error_each_round,error_each_round_per,error_each_round_rmse,t1_descend_list,t2_ascend_list=full_training(\n",
    "    strategy,num_round,show_losses,show_chosen_each_round\n",
    "    ,reset_phi,reset_h,weight_decay,lr_h,lr_phi,reduced,eta)\n",
    "\n",
    "\n",
    "stop=time.time()\n",
    "\n",
    "time_execution(start,stop)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "#plot the loss of h\n",
    "\n",
    "plt.plot(list(itertools.chain(*t1_descend_list)),c=\"green\")\n",
    "plt.grid(True)\n",
    "plt.yscale(\"log\")\n",
    "plt.title(\"T1 loss evolution each batch\",fontsize=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "#plot the loss of phi\n",
    "\n",
    "plt.plot(np.array(list(itertools.chain(*t2_ascend_list))),c=\"brown\")\n",
    "plt.grid(True)\n",
    "plt.title(\"T2 loss evolution each batch\",fontsize=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "#plot RMSE\n",
    "\n",
    "plt.plot(error_each_round_rmse)\n",
    "plt.grid(True)\n",
    "plt.title(\"RMSE of h each rounds\",fontsize=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "#plot MAE\n",
    "\n",
    "plt.plot(error_each_round)\n",
    "plt.grid(True)\n",
    "plt.title(\"mean absolute error of h each rounds\",fontsize=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "#plot MAPE\n",
    "\n",
    "plt.plot(error_each_round_per)\n",
    "plt.grid(True)\n",
    "plt.title(\"mean absolute percentage error of h each rounds\",fontsize=20)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}