mathpaper
This model is a fine-tuned version of bigcode/starcoderbase-1b on a dataset of 1000 arxiv category theory publications.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3831 | 0.05 | 100 | 1.4326 |
1.2475 | 0.1 | 200 | 1.4149 |
1.2937 | 0.15 | 300 | 1.3903 |
1.3187 | 0.2 | 400 | 1.3723 |
1.4185 | 0.25 | 500 | 1.3577 |
1.3816 | 0.3 | 600 | 1.3475 |
1.324 | 0.35 | 700 | 1.3467 |
1.3456 | 0.4 | 800 | 1.3347 |
1.2906 | 0.45 | 900 | 1.3360 |
1.2916 | 0.5 | 1000 | 1.3315 |
1.3851 | 0.55 | 1100 | 1.3232 |
1.1827 | 0.6 | 1200 | 1.3193 |
1.2704 | 0.65 | 1300 | 1.3180 |
1.2495 | 0.7 | 1400 | 1.3104 |
1.2986 | 0.75 | 1500 | 1.3059 |
1.3759 | 0.8 | 1600 | 1.3005 |
1.2775 | 0.85 | 1700 | 1.2983 |
1.2648 | 0.9 | 1800 | 1.2969 |
1.2247 | 0.95 | 1900 | 1.2961 |
1.2152 | 1.0 | 2000 | 1.2959 |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Maxva/mathpaper
Base model
bigcode/starcoderbase-1b