ASAP_FineTuningBERT_AugV4_k10_task1_organization_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6073
- Qwk: 0.4163
- Mse: 0.6073
- Rmse: 0.7793
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0020 | 2 | 14.2524 | 0.0 | 14.2524 | 3.7752 |
No log | 0.0041 | 4 | 12.4355 | 0.0 | 12.4355 | 3.5264 |
No log | 0.0061 | 6 | 10.4416 | 0.0080 | 10.4416 | 3.2313 |
No log | 0.0081 | 8 | 7.8681 | 0.0 | 7.8681 | 2.8050 |
No log | 0.0102 | 10 | 6.0614 | 0.0405 | 6.0614 | 2.4620 |
No log | 0.0122 | 12 | 4.7016 | 0.0234 | 4.7016 | 2.1683 |
No log | 0.0142 | 14 | 3.4154 | 0.0115 | 3.4154 | 1.8481 |
No log | 0.0163 | 16 | 2.5009 | 0.1257 | 2.5009 | 1.5814 |
No log | 0.0183 | 18 | 1.9497 | 0.1155 | 1.9497 | 1.3963 |
No log | 0.0203 | 20 | 1.3874 | 0.0484 | 1.3874 | 1.1779 |
No log | 0.0224 | 22 | 1.0867 | 0.0316 | 1.0867 | 1.0424 |
No log | 0.0244 | 24 | 0.8935 | 0.0397 | 0.8935 | 0.9453 |
No log | 0.0264 | 26 | 0.7875 | 0.2115 | 0.7875 | 0.8874 |
No log | 0.0285 | 28 | 0.7447 | 0.1547 | 0.7447 | 0.8630 |
No log | 0.0305 | 30 | 0.8089 | 0.1185 | 0.8089 | 0.8994 |
No log | 0.0326 | 32 | 0.9391 | 0.0689 | 0.9391 | 0.9691 |
No log | 0.0346 | 34 | 0.9037 | 0.0689 | 0.9037 | 0.9506 |
No log | 0.0366 | 36 | 0.8205 | 0.1255 | 0.8205 | 0.9058 |
No log | 0.0387 | 38 | 0.9736 | 0.0521 | 0.9736 | 0.9867 |
No log | 0.0407 | 40 | 1.1668 | 0.1608 | 1.1668 | 1.0802 |
No log | 0.0427 | 42 | 0.9403 | 0.0521 | 0.9403 | 0.9697 |
No log | 0.0448 | 44 | 0.9024 | 0.0521 | 0.9024 | 0.9500 |
No log | 0.0468 | 46 | 1.0188 | 0.0521 | 1.0188 | 1.0094 |
No log | 0.0488 | 48 | 0.8766 | 0.0521 | 0.8766 | 0.9362 |
No log | 0.0509 | 50 | 0.8789 | 0.0521 | 0.8789 | 0.9375 |
No log | 0.0529 | 52 | 1.1058 | 0.0419 | 1.1058 | 1.0516 |
No log | 0.0549 | 54 | 1.3660 | 0.0417 | 1.3660 | 1.1688 |
No log | 0.0570 | 56 | 1.1852 | 0.0124 | 1.1852 | 1.0887 |
No log | 0.0590 | 58 | 0.8975 | 0.0506 | 0.8975 | 0.9474 |
No log | 0.0610 | 60 | 0.8719 | 0.0506 | 0.8719 | 0.9337 |
No log | 0.0631 | 62 | 0.8985 | 0.0521 | 0.8985 | 0.9479 |
No log | 0.0651 | 64 | 1.0891 | 0.0532 | 1.0891 | 1.0436 |
No log | 0.0671 | 66 | 1.2190 | 0.0523 | 1.2190 | 1.1041 |
No log | 0.0692 | 68 | 0.9515 | 0.0521 | 0.9515 | 0.9754 |
No log | 0.0712 | 70 | 0.8337 | 0.0726 | 0.8337 | 0.9131 |
No log | 0.0732 | 72 | 0.8283 | 0.0521 | 0.8283 | 0.9101 |
No log | 0.0753 | 74 | 0.9558 | 0.0521 | 0.9558 | 0.9776 |
No log | 0.0773 | 76 | 1.1886 | 0.0356 | 1.1886 | 1.0902 |
No log | 0.0793 | 78 | 1.3286 | 0.1173 | 1.3286 | 1.1526 |
No log | 0.0814 | 80 | 1.2141 | 0.2806 | 1.2141 | 1.1019 |
No log | 0.0834 | 82 | 0.9281 | 0.0348 | 0.9281 | 0.9634 |
No log | 0.0855 | 84 | 0.8013 | 0.0348 | 0.8013 | 0.8951 |
No log | 0.0875 | 86 | 0.7968 | 0.0174 | 0.7968 | 0.8926 |
No log | 0.0895 | 88 | 0.7858 | 0.0348 | 0.7858 | 0.8864 |
No log | 0.0916 | 90 | 0.8314 | 0.0348 | 0.8314 | 0.9118 |
No log | 0.0936 | 92 | 0.9557 | 0.0348 | 0.9557 | 0.9776 |
No log | 0.0956 | 94 | 1.0167 | 0.0348 | 1.0167 | 1.0083 |
No log | 0.0977 | 96 | 0.9794 | 0.0348 | 0.9794 | 0.9897 |
No log | 0.0997 | 98 | 0.9675 | 0.0348 | 0.9675 | 0.9836 |
No log | 0.1017 | 100 | 0.8935 | 0.0521 | 0.8935 | 0.9453 |
No log | 0.1038 | 102 | 0.7942 | 0.0521 | 0.7942 | 0.8912 |
No log | 0.1058 | 104 | 0.7652 | 0.0521 | 0.7652 | 0.8747 |
No log | 0.1078 | 106 | 0.7540 | 0.0521 | 0.7540 | 0.8683 |
No log | 0.1099 | 108 | 0.7946 | 0.0521 | 0.7946 | 0.8914 |
No log | 0.1119 | 110 | 0.8123 | 0.0348 | 0.8123 | 0.9013 |
No log | 0.1139 | 112 | 0.7863 | 0.0348 | 0.7863 | 0.8867 |
No log | 0.1160 | 114 | 0.7900 | 0.0348 | 0.7900 | 0.8888 |
No log | 0.1180 | 116 | 0.7818 | 0.0174 | 0.7818 | 0.8842 |
No log | 0.1200 | 118 | 0.8444 | 0.0174 | 0.8444 | 0.9189 |
No log | 0.1221 | 120 | 0.9907 | 0.1248 | 0.9907 | 0.9953 |
No log | 0.1241 | 122 | 1.0523 | 0.2664 | 1.0523 | 1.0258 |
No log | 0.1261 | 124 | 1.0840 | 0.2782 | 1.0840 | 1.0412 |
No log | 0.1282 | 126 | 0.9240 | 0.1057 | 0.9240 | 0.9613 |
No log | 0.1302 | 128 | 0.8543 | 0.0200 | 0.8543 | 0.9243 |
No log | 0.1322 | 130 | 0.8993 | 0.1809 | 0.8993 | 0.9483 |
No log | 0.1343 | 132 | 1.1177 | 0.1666 | 1.1177 | 1.0572 |
No log | 0.1363 | 134 | 1.2346 | 0.1118 | 1.2346 | 1.1111 |
No log | 0.1384 | 136 | 1.1394 | 0.0431 | 1.1394 | 1.0675 |
No log | 0.1404 | 138 | 1.2881 | 0.0772 | 1.2881 | 1.1349 |
No log | 0.1424 | 140 | 1.3646 | 0.0869 | 1.3646 | 1.1681 |
No log | 0.1445 | 142 | 1.2050 | 0.0798 | 1.2050 | 1.0977 |
No log | 0.1465 | 144 | 1.1245 | 0.1208 | 1.1245 | 1.0604 |
No log | 0.1485 | 146 | 1.1741 | 0.1267 | 1.1741 | 1.0836 |
No log | 0.1506 | 148 | 1.2027 | 0.1231 | 1.2027 | 1.0967 |
No log | 0.1526 | 150 | 0.9615 | 0.1997 | 0.9615 | 0.9805 |
No log | 0.1546 | 152 | 0.9363 | 0.1842 | 0.9363 | 0.9676 |
No log | 0.1567 | 154 | 1.2144 | 0.1447 | 1.2144 | 1.1020 |
No log | 0.1587 | 156 | 1.6331 | 0.0834 | 1.6331 | 1.2779 |
No log | 0.1607 | 158 | 1.6617 | 0.0635 | 1.6617 | 1.2891 |
No log | 0.1628 | 160 | 1.4068 | 0.1029 | 1.4068 | 1.1861 |
No log | 0.1648 | 162 | 1.2530 | 0.1126 | 1.2530 | 1.1194 |
No log | 0.1668 | 164 | 1.1498 | 0.1524 | 1.1498 | 1.0723 |
No log | 0.1689 | 166 | 1.2417 | 0.1511 | 1.2417 | 1.1143 |
No log | 0.1709 | 168 | 1.1797 | 0.1832 | 1.1797 | 1.0861 |
No log | 0.1729 | 170 | 1.2454 | 0.1660 | 1.2454 | 1.1160 |
No log | 0.1750 | 172 | 1.0620 | 0.2258 | 1.0620 | 1.0305 |
No log | 0.1770 | 174 | 0.9187 | 0.2552 | 0.9187 | 0.9585 |
No log | 0.1790 | 176 | 1.0228 | 0.2500 | 1.0228 | 1.0113 |
No log | 0.1811 | 178 | 1.2139 | 0.1965 | 1.2139 | 1.1018 |
No log | 0.1831 | 180 | 1.0744 | 0.2235 | 1.0744 | 1.0365 |
No log | 0.1851 | 182 | 0.8469 | 0.3123 | 0.8469 | 0.9203 |
No log | 0.1872 | 184 | 0.7594 | 0.2231 | 0.7594 | 0.8714 |
No log | 0.1892 | 186 | 0.8029 | 0.2100 | 0.8029 | 0.8960 |
No log | 0.1913 | 188 | 0.9766 | 0.2680 | 0.9766 | 0.9882 |
No log | 0.1933 | 190 | 0.9017 | 0.2362 | 0.9017 | 0.9496 |
No log | 0.1953 | 192 | 0.7546 | 0.1702 | 0.7546 | 0.8687 |
No log | 0.1974 | 194 | 0.6947 | 0.1623 | 0.6947 | 0.8335 |
No log | 0.1994 | 196 | 0.7068 | 0.1856 | 0.7068 | 0.8407 |
No log | 0.2014 | 198 | 0.8325 | 0.2454 | 0.8325 | 0.9124 |
No log | 0.2035 | 200 | 1.2753 | 0.1797 | 1.2753 | 1.1293 |
No log | 0.2055 | 202 | 1.4321 | 0.1525 | 1.4321 | 1.1967 |
No log | 0.2075 | 204 | 1.1169 | 0.2236 | 1.1169 | 1.0568 |
No log | 0.2096 | 206 | 0.8111 | 0.1988 | 0.8111 | 0.9006 |
No log | 0.2116 | 208 | 0.7759 | 0.1293 | 0.7759 | 0.8808 |
No log | 0.2136 | 210 | 0.8296 | 0.2287 | 0.8296 | 0.9108 |
No log | 0.2157 | 212 | 1.0859 | 0.2387 | 1.0859 | 1.0421 |
No log | 0.2177 | 214 | 1.3781 | 0.1422 | 1.3781 | 1.1739 |
No log | 0.2197 | 216 | 1.3072 | 0.1524 | 1.3072 | 1.1433 |
No log | 0.2218 | 218 | 1.0086 | 0.2753 | 1.0086 | 1.0043 |
No log | 0.2238 | 220 | 0.7956 | 0.2332 | 0.7956 | 0.8920 |
No log | 0.2258 | 222 | 0.7944 | 0.2511 | 0.7944 | 0.8913 |
No log | 0.2279 | 224 | 0.9285 | 0.2923 | 0.9285 | 0.9636 |
No log | 0.2299 | 226 | 1.2129 | 0.1833 | 1.2129 | 1.1013 |
No log | 0.2319 | 228 | 1.2641 | 0.1668 | 1.2641 | 1.1243 |
No log | 0.2340 | 230 | 1.0853 | 0.2767 | 1.0853 | 1.0418 |
No log | 0.2360 | 232 | 0.9418 | 0.3350 | 0.9418 | 0.9705 |
No log | 0.2380 | 234 | 0.9214 | 0.3267 | 0.9214 | 0.9599 |
No log | 0.2401 | 236 | 0.8887 | 0.3415 | 0.8887 | 0.9427 |
No log | 0.2421 | 238 | 0.8320 | 0.3196 | 0.8320 | 0.9121 |
No log | 0.2442 | 240 | 0.7991 | 0.3268 | 0.7991 | 0.8939 |
No log | 0.2462 | 242 | 0.7630 | 0.3526 | 0.7630 | 0.8735 |
No log | 0.2482 | 244 | 0.7726 | 0.3838 | 0.7726 | 0.8790 |
No log | 0.2503 | 246 | 0.8695 | 0.3573 | 0.8695 | 0.9325 |
No log | 0.2523 | 248 | 1.1970 | 0.2493 | 1.1970 | 1.0941 |
No log | 0.2543 | 250 | 1.2131 | 0.2300 | 1.2131 | 1.1014 |
No log | 0.2564 | 252 | 0.9347 | 0.3020 | 0.9347 | 0.9668 |
No log | 0.2584 | 254 | 0.7301 | 0.3449 | 0.7301 | 0.8545 |
No log | 0.2604 | 256 | 0.7240 | 0.3536 | 0.7240 | 0.8509 |
No log | 0.2625 | 258 | 0.7886 | 0.3632 | 0.7886 | 0.8880 |
No log | 0.2645 | 260 | 0.7821 | 0.3490 | 0.7821 | 0.8844 |
No log | 0.2665 | 262 | 0.8392 | 0.3562 | 0.8392 | 0.9161 |
No log | 0.2686 | 264 | 0.7377 | 0.3767 | 0.7377 | 0.8589 |
No log | 0.2706 | 266 | 0.6526 | 0.4354 | 0.6526 | 0.8079 |
No log | 0.2726 | 268 | 0.6136 | 0.4634 | 0.6136 | 0.7833 |
No log | 0.2747 | 270 | 0.6233 | 0.4561 | 0.6233 | 0.7895 |
No log | 0.2767 | 272 | 0.6340 | 0.4532 | 0.6340 | 0.7962 |
No log | 0.2787 | 274 | 0.6458 | 0.4613 | 0.6458 | 0.8036 |
No log | 0.2808 | 276 | 0.6249 | 0.4796 | 0.6249 | 0.7905 |
No log | 0.2828 | 278 | 0.5922 | 0.4940 | 0.5922 | 0.7695 |
No log | 0.2848 | 280 | 0.5898 | 0.4875 | 0.5898 | 0.7680 |
No log | 0.2869 | 282 | 0.6014 | 0.4327 | 0.6014 | 0.7755 |
No log | 0.2889 | 284 | 0.5898 | 0.4485 | 0.5898 | 0.7680 |
No log | 0.2909 | 286 | 0.6508 | 0.4408 | 0.6508 | 0.8067 |
No log | 0.2930 | 288 | 0.7140 | 0.4352 | 0.7140 | 0.8450 |
No log | 0.2950 | 290 | 0.6432 | 0.4524 | 0.6432 | 0.8020 |
No log | 0.2970 | 292 | 0.6601 | 0.4622 | 0.6601 | 0.8125 |
No log | 0.2991 | 294 | 0.6945 | 0.4394 | 0.6945 | 0.8333 |
No log | 0.3011 | 296 | 0.9330 | 0.3413 | 0.9330 | 0.9659 |
No log | 0.3032 | 298 | 0.8364 | 0.3624 | 0.8364 | 0.9145 |
No log | 0.3052 | 300 | 0.6684 | 0.4309 | 0.6684 | 0.8175 |
No log | 0.3072 | 302 | 0.6631 | 0.4301 | 0.6631 | 0.8143 |
No log | 0.3093 | 304 | 0.6487 | 0.4362 | 0.6487 | 0.8054 |
No log | 0.3113 | 306 | 0.7637 | 0.3553 | 0.7637 | 0.8739 |
No log | 0.3133 | 308 | 0.8431 | 0.2993 | 0.8431 | 0.9182 |
No log | 0.3154 | 310 | 0.7241 | 0.3513 | 0.7241 | 0.8509 |
No log | 0.3174 | 312 | 0.6358 | 0.3828 | 0.6358 | 0.7974 |
No log | 0.3194 | 314 | 0.7444 | 0.2926 | 0.7444 | 0.8628 |
No log | 0.3215 | 316 | 0.7039 | 0.3169 | 0.7039 | 0.8390 |
No log | 0.3235 | 318 | 0.6119 | 0.4647 | 0.6119 | 0.7822 |
No log | 0.3255 | 320 | 0.7097 | 0.3611 | 0.7097 | 0.8424 |
No log | 0.3276 | 322 | 0.7211 | 0.3566 | 0.7211 | 0.8492 |
No log | 0.3296 | 324 | 0.6242 | 0.4539 | 0.6242 | 0.7901 |
No log | 0.3316 | 326 | 0.6826 | 0.3977 | 0.6826 | 0.8262 |
No log | 0.3337 | 328 | 0.8104 | 0.2971 | 0.8104 | 0.9002 |
No log | 0.3357 | 330 | 0.7201 | 0.3698 | 0.7201 | 0.8486 |
No log | 0.3377 | 332 | 0.6255 | 0.4575 | 0.6255 | 0.7909 |
No log | 0.3398 | 334 | 0.7740 | 0.3624 | 0.7740 | 0.8797 |
No log | 0.3418 | 336 | 0.8368 | 0.3493 | 0.8368 | 0.9148 |
No log | 0.3438 | 338 | 0.7049 | 0.3372 | 0.7049 | 0.8396 |
No log | 0.3459 | 340 | 0.6016 | 0.4258 | 0.6016 | 0.7756 |
No log | 0.3479 | 342 | 0.5956 | 0.4550 | 0.5956 | 0.7718 |
No log | 0.3499 | 344 | 0.5910 | 0.4834 | 0.5910 | 0.7687 |
No log | 0.3520 | 346 | 0.6334 | 0.4749 | 0.6334 | 0.7958 |
No log | 0.3540 | 348 | 0.6347 | 0.4713 | 0.6347 | 0.7967 |
No log | 0.3561 | 350 | 0.5916 | 0.4821 | 0.5916 | 0.7691 |
No log | 0.3581 | 352 | 0.5980 | 0.4636 | 0.5980 | 0.7733 |
No log | 0.3601 | 354 | 0.6013 | 0.4939 | 0.6013 | 0.7754 |
No log | 0.3622 | 356 | 0.6365 | 0.5244 | 0.6365 | 0.7978 |
No log | 0.3642 | 358 | 0.6629 | 0.5073 | 0.6629 | 0.8142 |
No log | 0.3662 | 360 | 0.6258 | 0.5027 | 0.6258 | 0.7911 |
No log | 0.3683 | 362 | 0.6111 | 0.4828 | 0.6111 | 0.7817 |
No log | 0.3703 | 364 | 0.6044 | 0.4962 | 0.6044 | 0.7774 |
No log | 0.3723 | 366 | 0.5941 | 0.4996 | 0.5941 | 0.7708 |
No log | 0.3744 | 368 | 0.6032 | 0.5027 | 0.6032 | 0.7766 |
No log | 0.3764 | 370 | 0.5909 | 0.5003 | 0.5909 | 0.7687 |
No log | 0.3784 | 372 | 0.5972 | 0.4688 | 0.5972 | 0.7728 |
No log | 0.3805 | 374 | 0.5919 | 0.4855 | 0.5919 | 0.7694 |
No log | 0.3825 | 376 | 0.5970 | 0.4243 | 0.5970 | 0.7727 |
No log | 0.3845 | 378 | 0.5977 | 0.4485 | 0.5977 | 0.7731 |
No log | 0.3866 | 380 | 0.6073 | 0.4508 | 0.6073 | 0.7793 |
No log | 0.3886 | 382 | 0.6441 | 0.4980 | 0.6441 | 0.8025 |
No log | 0.3906 | 384 | 0.6384 | 0.4684 | 0.6384 | 0.7990 |
No log | 0.3927 | 386 | 0.7185 | 0.4208 | 0.7185 | 0.8476 |
No log | 0.3947 | 388 | 0.7171 | 0.4134 | 0.7171 | 0.8468 |
No log | 0.3967 | 390 | 0.6906 | 0.4733 | 0.6906 | 0.8310 |
No log | 0.3988 | 392 | 0.7191 | 0.4898 | 0.7191 | 0.8480 |
No log | 0.4008 | 394 | 0.6986 | 0.4566 | 0.6986 | 0.8358 |
No log | 0.4028 | 396 | 0.7147 | 0.3921 | 0.7147 | 0.8454 |
No log | 0.4049 | 398 | 0.6481 | 0.4475 | 0.6481 | 0.8050 |
No log | 0.4069 | 400 | 0.6870 | 0.4532 | 0.6870 | 0.8289 |
No log | 0.4090 | 402 | 0.6674 | 0.4586 | 0.6674 | 0.8170 |
No log | 0.4110 | 404 | 0.6029 | 0.4794 | 0.6029 | 0.7764 |
No log | 0.4130 | 406 | 0.6205 | 0.3962 | 0.6205 | 0.7877 |
No log | 0.4151 | 408 | 0.6764 | 0.3891 | 0.6764 | 0.8225 |
No log | 0.4171 | 410 | 0.6025 | 0.3915 | 0.6025 | 0.7762 |
No log | 0.4191 | 412 | 0.6819 | 0.3999 | 0.6819 | 0.8258 |
No log | 0.4212 | 414 | 0.7267 | 0.3785 | 0.7267 | 0.8524 |
No log | 0.4232 | 416 | 0.6667 | 0.4705 | 0.6667 | 0.8165 |
No log | 0.4252 | 418 | 0.5916 | 0.4633 | 0.5916 | 0.7692 |
No log | 0.4273 | 420 | 0.5976 | 0.4962 | 0.5976 | 0.7730 |
No log | 0.4293 | 422 | 0.6359 | 0.5205 | 0.6359 | 0.7975 |
No log | 0.4313 | 424 | 0.9656 | 0.3844 | 0.9656 | 0.9827 |
No log | 0.4334 | 426 | 1.2683 | 0.3138 | 1.2683 | 1.1262 |
No log | 0.4354 | 428 | 1.1435 | 0.3347 | 1.1435 | 1.0694 |
No log | 0.4374 | 430 | 0.7352 | 0.4648 | 0.7352 | 0.8575 |
No log | 0.4395 | 432 | 0.5771 | 0.4916 | 0.5771 | 0.7596 |
No log | 0.4415 | 434 | 0.5809 | 0.4870 | 0.5809 | 0.7621 |
No log | 0.4435 | 436 | 0.5932 | 0.5162 | 0.5932 | 0.7702 |
No log | 0.4456 | 438 | 0.6494 | 0.4965 | 0.6494 | 0.8059 |
No log | 0.4476 | 440 | 0.7660 | 0.4166 | 0.7660 | 0.8752 |
No log | 0.4496 | 442 | 0.7850 | 0.4095 | 0.7850 | 0.8860 |
No log | 0.4517 | 444 | 0.6352 | 0.4918 | 0.6352 | 0.7970 |
No log | 0.4537 | 446 | 0.5906 | 0.5230 | 0.5906 | 0.7685 |
No log | 0.4557 | 448 | 0.6299 | 0.4880 | 0.6299 | 0.7937 |
No log | 0.4578 | 450 | 0.8701 | 0.3860 | 0.8701 | 0.9328 |
No log | 0.4598 | 452 | 0.9842 | 0.3595 | 0.9842 | 0.9921 |
No log | 0.4619 | 454 | 0.7763 | 0.4043 | 0.7763 | 0.8811 |
No log | 0.4639 | 456 | 0.6003 | 0.4594 | 0.6003 | 0.7748 |
No log | 0.4659 | 458 | 0.5860 | 0.5009 | 0.5860 | 0.7655 |
No log | 0.4680 | 460 | 0.6568 | 0.4595 | 0.6568 | 0.8104 |
No log | 0.4700 | 462 | 0.6725 | 0.4575 | 0.6725 | 0.8201 |
No log | 0.4720 | 464 | 0.6127 | 0.5014 | 0.6127 | 0.7827 |
No log | 0.4741 | 466 | 0.6224 | 0.4920 | 0.6224 | 0.7889 |
No log | 0.4761 | 468 | 0.7347 | 0.4548 | 0.7347 | 0.8572 |
No log | 0.4781 | 470 | 1.0236 | 0.3584 | 1.0236 | 1.0117 |
No log | 0.4802 | 472 | 0.9869 | 0.3368 | 0.9869 | 0.9934 |
No log | 0.4822 | 474 | 0.7095 | 0.3538 | 0.7095 | 0.8423 |
No log | 0.4842 | 476 | 0.6062 | 0.3906 | 0.6062 | 0.7786 |
No log | 0.4863 | 478 | 0.6046 | 0.3666 | 0.6046 | 0.7776 |
No log | 0.4883 | 480 | 0.6634 | 0.3503 | 0.6634 | 0.8145 |
No log | 0.4903 | 482 | 0.7740 | 0.3890 | 0.7740 | 0.8798 |
No log | 0.4924 | 484 | 0.7046 | 0.4006 | 0.7046 | 0.8394 |
No log | 0.4944 | 486 | 0.7094 | 0.4278 | 0.7094 | 0.8422 |
No log | 0.4964 | 488 | 0.8236 | 0.4176 | 0.8236 | 0.9075 |
No log | 0.4985 | 490 | 0.7108 | 0.4590 | 0.7108 | 0.8431 |
No log | 0.5005 | 492 | 0.6641 | 0.4734 | 0.6641 | 0.8149 |
No log | 0.5025 | 494 | 0.6132 | 0.4669 | 0.6132 | 0.7831 |
No log | 0.5046 | 496 | 0.6440 | 0.4816 | 0.6440 | 0.8025 |
No log | 0.5066 | 498 | 0.8052 | 0.4396 | 0.8052 | 0.8973 |
1.0556 | 0.5086 | 500 | 0.8255 | 0.4385 | 0.8255 | 0.9086 |
1.0556 | 0.5107 | 502 | 0.7262 | 0.4366 | 0.7262 | 0.8522 |
1.0556 | 0.5127 | 504 | 0.6593 | 0.4391 | 0.6593 | 0.8120 |
1.0556 | 0.5148 | 506 | 0.7627 | 0.4260 | 0.7627 | 0.8733 |
1.0556 | 0.5168 | 508 | 0.8397 | 0.4043 | 0.8397 | 0.9164 |
1.0556 | 0.5188 | 510 | 0.7585 | 0.4378 | 0.7585 | 0.8709 |
1.0556 | 0.5209 | 512 | 0.6207 | 0.4179 | 0.6207 | 0.7879 |
1.0556 | 0.5229 | 514 | 0.6073 | 0.4163 | 0.6073 | 0.7793 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/ASAP_FineTuningBERT_AugV4_k10_task1_organization_fold0
Base model
google-bert/bert-base-uncased