metadata
library_name: transformers
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
model-index:
- name: Arabic_FineTuningAraBERT_AugV0_k1_task1_organization_fold0
results: []
Arabic_FineTuningAraBERT_AugV0_k1_task1_organization_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9449
- Qwk: 0.5896
- Mse: 0.9449
- Rmse: 0.9721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.1176 | 2 | 5.1330 | 0.0904 | 5.1330 | 2.2656 |
No log | 0.2353 | 4 | 3.4675 | 0.0 | 3.4675 | 1.8621 |
No log | 0.3529 | 6 | 2.3648 | 0.0696 | 2.3648 | 1.5378 |
No log | 0.4706 | 8 | 1.6993 | 0.0 | 1.6993 | 1.3036 |
No log | 0.5882 | 10 | 1.4000 | 0.1973 | 1.4000 | 1.1832 |
No log | 0.7059 | 12 | 1.3257 | 0.1933 | 1.3257 | 1.1514 |
No log | 0.8235 | 14 | 1.2645 | 0.2939 | 1.2645 | 1.1245 |
No log | 0.9412 | 16 | 1.2126 | 0.2668 | 1.2126 | 1.1012 |
No log | 1.0588 | 18 | 0.9516 | 0.3259 | 0.9516 | 0.9755 |
No log | 1.1765 | 20 | 0.8599 | 0.4590 | 0.8599 | 0.9273 |
No log | 1.2941 | 22 | 0.8162 | 0.4085 | 0.8162 | 0.9035 |
No log | 1.4118 | 24 | 0.9496 | 0.3478 | 0.9496 | 0.9745 |
No log | 1.5294 | 26 | 1.1079 | 0.3209 | 1.1079 | 1.0526 |
No log | 1.6471 | 28 | 1.1311 | 0.3209 | 1.1311 | 1.0635 |
No log | 1.7647 | 30 | 1.0768 | 0.3494 | 1.0768 | 1.0377 |
No log | 1.8824 | 32 | 1.0150 | 0.5698 | 1.0150 | 1.0075 |
No log | 2.0 | 34 | 1.0474 | 0.5468 | 1.0474 | 1.0234 |
No log | 2.1176 | 36 | 0.9894 | 0.5653 | 0.9894 | 0.9947 |
No log | 2.2353 | 38 | 0.8745 | 0.5830 | 0.8745 | 0.9351 |
No log | 2.3529 | 40 | 0.8798 | 0.6738 | 0.8798 | 0.9380 |
No log | 2.4706 | 42 | 1.0482 | 0.5830 | 1.0482 | 1.0238 |
No log | 2.5882 | 44 | 1.1713 | 0.5660 | 1.1713 | 1.0823 |
No log | 2.7059 | 46 | 1.0797 | 0.5686 | 1.0797 | 1.0391 |
No log | 2.8235 | 48 | 0.9651 | 0.5686 | 0.9651 | 0.9824 |
No log | 2.9412 | 50 | 0.8528 | 0.6338 | 0.8528 | 0.9235 |
No log | 3.0588 | 52 | 0.8694 | 0.5312 | 0.8694 | 0.9324 |
No log | 3.1765 | 54 | 0.9500 | 0.5312 | 0.9500 | 0.9747 |
No log | 3.2941 | 56 | 0.9084 | 0.5312 | 0.9084 | 0.9531 |
No log | 3.4118 | 58 | 0.8059 | 0.5312 | 0.8059 | 0.8977 |
No log | 3.5294 | 60 | 0.8138 | 0.6338 | 0.8138 | 0.9021 |
No log | 3.6471 | 62 | 0.9146 | 0.5422 | 0.9146 | 0.9564 |
No log | 3.7647 | 64 | 0.9550 | 0.5365 | 0.9550 | 0.9773 |
No log | 3.8824 | 66 | 0.9336 | 0.5365 | 0.9336 | 0.9662 |
No log | 4.0 | 68 | 0.9319 | 0.5625 | 0.9319 | 0.9654 |
No log | 4.1176 | 70 | 0.8851 | 0.6260 | 0.8851 | 0.9408 |
No log | 4.2353 | 72 | 0.8516 | 0.6182 | 0.8516 | 0.9228 |
No log | 4.3529 | 74 | 0.8250 | 0.6188 | 0.8250 | 0.9083 |
No log | 4.4706 | 76 | 0.8158 | 0.6690 | 0.8158 | 0.9032 |
No log | 4.5882 | 78 | 0.8102 | 0.5882 | 0.8102 | 0.9001 |
No log | 4.7059 | 80 | 0.8191 | 0.5882 | 0.8191 | 0.9051 |
No log | 4.8235 | 82 | 0.8353 | 0.6441 | 0.8353 | 0.9139 |
No log | 4.9412 | 84 | 0.8613 | 0.6213 | 0.8613 | 0.9281 |
No log | 5.0588 | 86 | 0.9234 | 0.6038 | 0.9234 | 0.9610 |
No log | 5.1765 | 88 | 0.9213 | 0.5714 | 0.9213 | 0.9598 |
No log | 5.2941 | 90 | 0.8488 | 0.5563 | 0.8488 | 0.9213 |
No log | 5.4118 | 92 | 0.8263 | 0.5563 | 0.8263 | 0.9090 |
No log | 5.5294 | 94 | 0.8231 | 0.5896 | 0.8231 | 0.9073 |
No log | 5.6471 | 96 | 0.8229 | 0.6213 | 0.8229 | 0.9071 |
No log | 5.7647 | 98 | 0.8101 | 0.6213 | 0.8101 | 0.9000 |
No log | 5.8824 | 100 | 0.7902 | 0.6732 | 0.7902 | 0.8889 |
No log | 6.0 | 102 | 0.7975 | 0.6732 | 0.7975 | 0.8930 |
No log | 6.1176 | 104 | 0.7976 | 0.6732 | 0.7976 | 0.8931 |
No log | 6.2353 | 106 | 0.8341 | 0.6732 | 0.8341 | 0.9133 |
No log | 6.3529 | 108 | 0.8567 | 0.6677 | 0.8567 | 0.9256 |
No log | 6.4706 | 110 | 0.9204 | 0.6213 | 0.9204 | 0.9594 |
No log | 6.5882 | 112 | 0.9584 | 0.6038 | 0.9584 | 0.9790 |
No log | 6.7059 | 114 | 0.9535 | 0.6213 | 0.9535 | 0.9765 |
No log | 6.8235 | 116 | 0.9361 | 0.6213 | 0.9361 | 0.9675 |
No log | 6.9412 | 118 | 0.8850 | 0.6213 | 0.8850 | 0.9407 |
No log | 7.0588 | 120 | 0.8731 | 0.6213 | 0.8731 | 0.9344 |
No log | 7.1765 | 122 | 0.8714 | 0.6213 | 0.8714 | 0.9335 |
No log | 7.2941 | 124 | 0.8738 | 0.6213 | 0.8738 | 0.9348 |
No log | 7.4118 | 126 | 0.8868 | 0.6213 | 0.8868 | 0.9417 |
No log | 7.5294 | 128 | 0.9237 | 0.6213 | 0.9237 | 0.9611 |
No log | 7.6471 | 130 | 0.9781 | 0.5714 | 0.9781 | 0.9890 |
No log | 7.7647 | 132 | 0.9926 | 0.5686 | 0.9926 | 0.9963 |
No log | 7.8824 | 134 | 0.9841 | 0.5686 | 0.9841 | 0.9920 |
No log | 8.0 | 136 | 0.9469 | 0.5896 | 0.9469 | 0.9731 |
No log | 8.1176 | 138 | 0.9149 | 0.5896 | 0.9149 | 0.9565 |
No log | 8.2353 | 140 | 0.8707 | 0.6677 | 0.8707 | 0.9331 |
No log | 8.3529 | 142 | 0.8480 | 0.7178 | 0.8480 | 0.9209 |
No log | 8.4706 | 144 | 0.8500 | 0.6677 | 0.8500 | 0.9219 |
No log | 8.5882 | 146 | 0.8616 | 0.6677 | 0.8616 | 0.9282 |
No log | 8.7059 | 148 | 0.8742 | 0.6677 | 0.8742 | 0.9350 |
No log | 8.8235 | 150 | 0.8966 | 0.5896 | 0.8966 | 0.9469 |
No log | 8.9412 | 152 | 0.9197 | 0.5896 | 0.9197 | 0.9590 |
No log | 9.0588 | 154 | 0.9430 | 0.5896 | 0.9430 | 0.9711 |
No log | 9.1765 | 156 | 0.9552 | 0.5714 | 0.9552 | 0.9774 |
No log | 9.2941 | 158 | 0.9605 | 0.5714 | 0.9605 | 0.9800 |
No log | 9.4118 | 160 | 0.9609 | 0.5714 | 0.9609 | 0.9803 |
No log | 9.5294 | 162 | 0.9624 | 0.5714 | 0.9624 | 0.9810 |
No log | 9.6471 | 164 | 0.9603 | 0.5896 | 0.9603 | 0.9799 |
No log | 9.7647 | 166 | 0.9534 | 0.5896 | 0.9534 | 0.9764 |
No log | 9.8824 | 168 | 0.9476 | 0.5896 | 0.9476 | 0.9735 |
No log | 10.0 | 170 | 0.9449 | 0.5896 | 0.9449 | 0.9721 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1