Edit model card

Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6733
  • Qwk: 0.7427
  • Mse: 0.6733
  • Rmse: 0.8205

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0714 2 5.0549 0.0011 5.0549 2.2483
No log 0.1429 4 2.7057 0.0985 2.7057 1.6449
No log 0.2143 6 1.7000 0.1582 1.7000 1.3038
No log 0.2857 8 1.2397 0.3793 1.2397 1.1134
No log 0.3571 10 1.1990 0.3462 1.1990 1.0950
No log 0.4286 12 1.1639 0.2939 1.1639 1.0789
No log 0.5 14 1.0559 0.2974 1.0559 1.0276
No log 0.5714 16 0.9991 0.3665 0.9991 0.9996
No log 0.6429 18 1.0775 0.5085 1.0775 1.0380
No log 0.7143 20 1.1749 0.5290 1.1749 1.0839
No log 0.7857 22 1.0649 0.5086 1.0649 1.0319
No log 0.8571 24 1.0232 0.5304 1.0232 1.0115
No log 0.9286 26 0.9246 0.5304 0.9246 0.9616
No log 1.0 28 0.8984 0.6143 0.8984 0.9478
No log 1.0714 30 0.8632 0.6143 0.8632 0.9291
No log 1.1429 32 0.9797 0.6100 0.9797 0.9898
No log 1.2143 34 0.9444 0.6060 0.9444 0.9718
No log 1.2857 36 0.7667 0.6503 0.7667 0.8756
No log 1.3571 38 0.7386 0.7232 0.7386 0.8594
No log 1.4286 40 0.6966 0.7525 0.6966 0.8346
No log 1.5 42 0.7423 0.6871 0.7423 0.8615
No log 1.5714 44 0.7053 0.7058 0.7053 0.8398
No log 1.6429 46 0.6488 0.7525 0.6488 0.8055
No log 1.7143 48 0.7536 0.6461 0.7536 0.8681
No log 1.7857 50 0.7396 0.6517 0.7396 0.8600
No log 1.8571 52 0.6893 0.6361 0.6893 0.8303
No log 1.9286 54 0.7666 0.6503 0.7666 0.8756
No log 2.0 56 1.0883 0.5273 1.0883 1.0432
No log 2.0714 58 1.5983 0.1054 1.5983 1.2642
No log 2.1429 60 1.6993 0.1363 1.6993 1.3036
No log 2.2143 62 1.2698 0.3636 1.2698 1.1268
No log 2.2857 64 0.8766 0.5532 0.8766 0.9363
No log 2.3571 66 0.7457 0.6143 0.7457 0.8636
No log 2.4286 68 0.7594 0.6503 0.7594 0.8714
No log 2.5 70 0.7683 0.6842 0.7683 0.8765
No log 2.5714 72 0.7347 0.7232 0.7347 0.8571
No log 2.6429 74 0.7850 0.7058 0.7850 0.8860
No log 2.7143 76 0.8892 0.6940 0.8892 0.9430
No log 2.7857 78 0.9128 0.6280 0.9128 0.9554
No log 2.8571 80 0.8893 0.6746 0.8893 0.9430
No log 2.9286 82 0.7909 0.6830 0.7909 0.8893
No log 3.0 84 0.7553 0.6830 0.7553 0.8691
No log 3.0714 86 0.7788 0.6363 0.7788 0.8825
No log 3.1429 88 0.8622 0.6115 0.8622 0.9285
No log 3.2143 90 0.8946 0.6115 0.8946 0.9458
No log 3.2857 92 0.8019 0.6972 0.8019 0.8955
No log 3.3571 94 0.6742 0.6830 0.6742 0.8211
No log 3.4286 96 0.6570 0.6830 0.6570 0.8106
No log 3.5 98 0.6634 0.7058 0.6634 0.8145
No log 3.5714 100 0.8008 0.7504 0.8008 0.8949
No log 3.6429 102 0.8772 0.6117 0.8772 0.9366
No log 3.7143 104 0.7695 0.6786 0.7695 0.8772
No log 3.7857 106 0.6265 0.7603 0.6265 0.7915
No log 3.8571 108 0.5754 0.7898 0.5754 0.7586
No log 3.9286 110 0.5755 0.7898 0.5755 0.7586
No log 4.0 112 0.6409 0.7603 0.6409 0.8006
No log 4.0714 114 0.7370 0.5777 0.7370 0.8585
No log 4.1429 116 0.6783 0.7216 0.6783 0.8236
No log 4.2143 118 0.5791 0.7417 0.5791 0.7610
No log 4.2857 120 0.5063 0.7898 0.5063 0.7116
No log 4.3571 122 0.4688 0.7327 0.4688 0.6847
No log 4.4286 124 0.4755 0.7327 0.4755 0.6896
No log 4.5 126 0.5228 0.7938 0.5228 0.7230
No log 4.5714 128 0.5609 0.7764 0.5609 0.7489
No log 4.6429 130 0.6445 0.7590 0.6445 0.8028
No log 4.7143 132 0.6361 0.7590 0.6361 0.7976
No log 4.7857 134 0.5655 0.7250 0.5655 0.7520
No log 4.8571 136 0.5630 0.7250 0.5630 0.7503
No log 4.9286 138 0.5357 0.7333 0.5357 0.7319
No log 5.0 140 0.5252 0.7157 0.5252 0.7247
No log 5.0714 142 0.5399 0.7157 0.5399 0.7348
No log 5.1429 144 0.5418 0.7517 0.5418 0.7361
No log 5.2143 146 0.6044 0.7586 0.6044 0.7774
No log 5.2857 148 0.6281 0.7586 0.6281 0.7925
No log 5.3571 150 0.6101 0.7586 0.6101 0.7811
No log 5.4286 152 0.5938 0.7586 0.5938 0.7706
No log 5.5 154 0.5466 0.7429 0.5466 0.7393
No log 5.5714 156 0.5238 0.7429 0.5238 0.7238
No log 5.6429 158 0.5230 0.7429 0.5230 0.7232
No log 5.7143 160 0.5558 0.7178 0.5558 0.7456
No log 5.7857 162 0.6161 0.7009 0.6161 0.7849
No log 5.8571 164 0.6358 0.7038 0.6358 0.7974
No log 5.9286 166 0.6488 0.7038 0.6488 0.8055
No log 6.0 168 0.6204 0.7511 0.6204 0.7877
No log 6.0714 170 0.5950 0.7594 0.5950 0.7714
No log 6.1429 172 0.5922 0.7602 0.5922 0.7696
No log 6.2143 174 0.5933 0.7602 0.5933 0.7703
No log 6.2857 176 0.5929 0.7775 0.5929 0.7700
No log 6.3571 178 0.6336 0.7775 0.6336 0.7960
No log 6.4286 180 0.7250 0.7038 0.7250 0.8515
No log 6.5 182 0.8433 0.6760 0.8433 0.9183
No log 6.5714 184 0.8694 0.6760 0.8694 0.9324
No log 6.6429 186 0.8376 0.6716 0.8376 0.9152
No log 6.7143 188 0.7636 0.6938 0.7636 0.8738
No log 6.7857 190 0.7226 0.7250 0.7226 0.8501
No log 6.8571 192 0.7105 0.7420 0.7105 0.8429
No log 6.9286 194 0.6798 0.7594 0.6798 0.8245
No log 7.0 196 0.6944 0.7745 0.6944 0.8333
No log 7.0714 198 0.7359 0.7658 0.7359 0.8578
No log 7.1429 200 0.7269 0.7273 0.7269 0.8526
No log 7.2143 202 0.6949 0.7819 0.6949 0.8336
No log 7.2857 204 0.6601 0.7678 0.6601 0.8125
No log 7.3571 206 0.6255 0.7182 0.6255 0.7909
No log 7.4286 208 0.6185 0.7350 0.6185 0.7865
No log 7.5 210 0.6120 0.7350 0.6120 0.7823
No log 7.5714 212 0.6065 0.7350 0.6065 0.7788
No log 7.6429 214 0.6087 0.7182 0.6087 0.7802
No log 7.7143 216 0.6264 0.7014 0.6264 0.7915
No log 7.7857 218 0.6490 0.7510 0.6490 0.8056
No log 7.8571 220 0.6458 0.7014 0.6458 0.8036
No log 7.9286 222 0.6349 0.7014 0.6349 0.7968
No log 8.0 224 0.6333 0.7182 0.6333 0.7958
No log 8.0714 226 0.6454 0.7014 0.6454 0.8034
No log 8.1429 228 0.6572 0.7014 0.6572 0.8107
No log 8.2143 230 0.6740 0.7106 0.6740 0.8210
No log 8.2857 232 0.6903 0.7504 0.6903 0.8309
No log 8.3571 234 0.6801 0.6738 0.6801 0.8247
No log 8.4286 236 0.6545 0.7014 0.6545 0.8090
No log 8.5 238 0.6319 0.7429 0.6319 0.7949
No log 8.5714 240 0.6242 0.7429 0.6242 0.7901
No log 8.6429 242 0.6290 0.7429 0.6290 0.7931
No log 8.7143 244 0.6318 0.7429 0.6318 0.7949
No log 8.7857 246 0.6435 0.7429 0.6435 0.8022
No log 8.8571 248 0.6644 0.7157 0.6644 0.8151
No log 8.9286 250 0.7006 0.7038 0.7006 0.8370
No log 9.0 252 0.7446 0.7081 0.7446 0.8629
No log 9.0714 254 0.7804 0.7081 0.7804 0.8834
No log 9.1429 256 0.7911 0.7081 0.7911 0.8894
No log 9.2143 258 0.7857 0.7081 0.7857 0.8864
No log 9.2857 260 0.7643 0.7059 0.7643 0.8743
No log 9.3571 262 0.7378 0.6620 0.7378 0.8589
No log 9.4286 264 0.7191 0.6620 0.7191 0.8480
No log 9.5 266 0.7094 0.6671 0.7094 0.8423
No log 9.5714 268 0.6989 0.7427 0.6989 0.8360
No log 9.6429 270 0.6882 0.7427 0.6882 0.8296
No log 9.7143 272 0.6811 0.7427 0.6811 0.8253
No log 9.7857 274 0.6757 0.7427 0.6757 0.8220
No log 9.8571 276 0.6738 0.7427 0.6738 0.8208
No log 9.9286 278 0.6730 0.7427 0.6730 0.8204
No log 10.0 280 0.6733 0.7427 0.6733 0.8205

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold0

Finetuned
(702)
this model