Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6733
- Qwk: 0.7427
- Mse: 0.6733
- Rmse: 0.8205
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0714 | 2 | 5.0549 | 0.0011 | 5.0549 | 2.2483 |
No log | 0.1429 | 4 | 2.7057 | 0.0985 | 2.7057 | 1.6449 |
No log | 0.2143 | 6 | 1.7000 | 0.1582 | 1.7000 | 1.3038 |
No log | 0.2857 | 8 | 1.2397 | 0.3793 | 1.2397 | 1.1134 |
No log | 0.3571 | 10 | 1.1990 | 0.3462 | 1.1990 | 1.0950 |
No log | 0.4286 | 12 | 1.1639 | 0.2939 | 1.1639 | 1.0789 |
No log | 0.5 | 14 | 1.0559 | 0.2974 | 1.0559 | 1.0276 |
No log | 0.5714 | 16 | 0.9991 | 0.3665 | 0.9991 | 0.9996 |
No log | 0.6429 | 18 | 1.0775 | 0.5085 | 1.0775 | 1.0380 |
No log | 0.7143 | 20 | 1.1749 | 0.5290 | 1.1749 | 1.0839 |
No log | 0.7857 | 22 | 1.0649 | 0.5086 | 1.0649 | 1.0319 |
No log | 0.8571 | 24 | 1.0232 | 0.5304 | 1.0232 | 1.0115 |
No log | 0.9286 | 26 | 0.9246 | 0.5304 | 0.9246 | 0.9616 |
No log | 1.0 | 28 | 0.8984 | 0.6143 | 0.8984 | 0.9478 |
No log | 1.0714 | 30 | 0.8632 | 0.6143 | 0.8632 | 0.9291 |
No log | 1.1429 | 32 | 0.9797 | 0.6100 | 0.9797 | 0.9898 |
No log | 1.2143 | 34 | 0.9444 | 0.6060 | 0.9444 | 0.9718 |
No log | 1.2857 | 36 | 0.7667 | 0.6503 | 0.7667 | 0.8756 |
No log | 1.3571 | 38 | 0.7386 | 0.7232 | 0.7386 | 0.8594 |
No log | 1.4286 | 40 | 0.6966 | 0.7525 | 0.6966 | 0.8346 |
No log | 1.5 | 42 | 0.7423 | 0.6871 | 0.7423 | 0.8615 |
No log | 1.5714 | 44 | 0.7053 | 0.7058 | 0.7053 | 0.8398 |
No log | 1.6429 | 46 | 0.6488 | 0.7525 | 0.6488 | 0.8055 |
No log | 1.7143 | 48 | 0.7536 | 0.6461 | 0.7536 | 0.8681 |
No log | 1.7857 | 50 | 0.7396 | 0.6517 | 0.7396 | 0.8600 |
No log | 1.8571 | 52 | 0.6893 | 0.6361 | 0.6893 | 0.8303 |
No log | 1.9286 | 54 | 0.7666 | 0.6503 | 0.7666 | 0.8756 |
No log | 2.0 | 56 | 1.0883 | 0.5273 | 1.0883 | 1.0432 |
No log | 2.0714 | 58 | 1.5983 | 0.1054 | 1.5983 | 1.2642 |
No log | 2.1429 | 60 | 1.6993 | 0.1363 | 1.6993 | 1.3036 |
No log | 2.2143 | 62 | 1.2698 | 0.3636 | 1.2698 | 1.1268 |
No log | 2.2857 | 64 | 0.8766 | 0.5532 | 0.8766 | 0.9363 |
No log | 2.3571 | 66 | 0.7457 | 0.6143 | 0.7457 | 0.8636 |
No log | 2.4286 | 68 | 0.7594 | 0.6503 | 0.7594 | 0.8714 |
No log | 2.5 | 70 | 0.7683 | 0.6842 | 0.7683 | 0.8765 |
No log | 2.5714 | 72 | 0.7347 | 0.7232 | 0.7347 | 0.8571 |
No log | 2.6429 | 74 | 0.7850 | 0.7058 | 0.7850 | 0.8860 |
No log | 2.7143 | 76 | 0.8892 | 0.6940 | 0.8892 | 0.9430 |
No log | 2.7857 | 78 | 0.9128 | 0.6280 | 0.9128 | 0.9554 |
No log | 2.8571 | 80 | 0.8893 | 0.6746 | 0.8893 | 0.9430 |
No log | 2.9286 | 82 | 0.7909 | 0.6830 | 0.7909 | 0.8893 |
No log | 3.0 | 84 | 0.7553 | 0.6830 | 0.7553 | 0.8691 |
No log | 3.0714 | 86 | 0.7788 | 0.6363 | 0.7788 | 0.8825 |
No log | 3.1429 | 88 | 0.8622 | 0.6115 | 0.8622 | 0.9285 |
No log | 3.2143 | 90 | 0.8946 | 0.6115 | 0.8946 | 0.9458 |
No log | 3.2857 | 92 | 0.8019 | 0.6972 | 0.8019 | 0.8955 |
No log | 3.3571 | 94 | 0.6742 | 0.6830 | 0.6742 | 0.8211 |
No log | 3.4286 | 96 | 0.6570 | 0.6830 | 0.6570 | 0.8106 |
No log | 3.5 | 98 | 0.6634 | 0.7058 | 0.6634 | 0.8145 |
No log | 3.5714 | 100 | 0.8008 | 0.7504 | 0.8008 | 0.8949 |
No log | 3.6429 | 102 | 0.8772 | 0.6117 | 0.8772 | 0.9366 |
No log | 3.7143 | 104 | 0.7695 | 0.6786 | 0.7695 | 0.8772 |
No log | 3.7857 | 106 | 0.6265 | 0.7603 | 0.6265 | 0.7915 |
No log | 3.8571 | 108 | 0.5754 | 0.7898 | 0.5754 | 0.7586 |
No log | 3.9286 | 110 | 0.5755 | 0.7898 | 0.5755 | 0.7586 |
No log | 4.0 | 112 | 0.6409 | 0.7603 | 0.6409 | 0.8006 |
No log | 4.0714 | 114 | 0.7370 | 0.5777 | 0.7370 | 0.8585 |
No log | 4.1429 | 116 | 0.6783 | 0.7216 | 0.6783 | 0.8236 |
No log | 4.2143 | 118 | 0.5791 | 0.7417 | 0.5791 | 0.7610 |
No log | 4.2857 | 120 | 0.5063 | 0.7898 | 0.5063 | 0.7116 |
No log | 4.3571 | 122 | 0.4688 | 0.7327 | 0.4688 | 0.6847 |
No log | 4.4286 | 124 | 0.4755 | 0.7327 | 0.4755 | 0.6896 |
No log | 4.5 | 126 | 0.5228 | 0.7938 | 0.5228 | 0.7230 |
No log | 4.5714 | 128 | 0.5609 | 0.7764 | 0.5609 | 0.7489 |
No log | 4.6429 | 130 | 0.6445 | 0.7590 | 0.6445 | 0.8028 |
No log | 4.7143 | 132 | 0.6361 | 0.7590 | 0.6361 | 0.7976 |
No log | 4.7857 | 134 | 0.5655 | 0.7250 | 0.5655 | 0.7520 |
No log | 4.8571 | 136 | 0.5630 | 0.7250 | 0.5630 | 0.7503 |
No log | 4.9286 | 138 | 0.5357 | 0.7333 | 0.5357 | 0.7319 |
No log | 5.0 | 140 | 0.5252 | 0.7157 | 0.5252 | 0.7247 |
No log | 5.0714 | 142 | 0.5399 | 0.7157 | 0.5399 | 0.7348 |
No log | 5.1429 | 144 | 0.5418 | 0.7517 | 0.5418 | 0.7361 |
No log | 5.2143 | 146 | 0.6044 | 0.7586 | 0.6044 | 0.7774 |
No log | 5.2857 | 148 | 0.6281 | 0.7586 | 0.6281 | 0.7925 |
No log | 5.3571 | 150 | 0.6101 | 0.7586 | 0.6101 | 0.7811 |
No log | 5.4286 | 152 | 0.5938 | 0.7586 | 0.5938 | 0.7706 |
No log | 5.5 | 154 | 0.5466 | 0.7429 | 0.5466 | 0.7393 |
No log | 5.5714 | 156 | 0.5238 | 0.7429 | 0.5238 | 0.7238 |
No log | 5.6429 | 158 | 0.5230 | 0.7429 | 0.5230 | 0.7232 |
No log | 5.7143 | 160 | 0.5558 | 0.7178 | 0.5558 | 0.7456 |
No log | 5.7857 | 162 | 0.6161 | 0.7009 | 0.6161 | 0.7849 |
No log | 5.8571 | 164 | 0.6358 | 0.7038 | 0.6358 | 0.7974 |
No log | 5.9286 | 166 | 0.6488 | 0.7038 | 0.6488 | 0.8055 |
No log | 6.0 | 168 | 0.6204 | 0.7511 | 0.6204 | 0.7877 |
No log | 6.0714 | 170 | 0.5950 | 0.7594 | 0.5950 | 0.7714 |
No log | 6.1429 | 172 | 0.5922 | 0.7602 | 0.5922 | 0.7696 |
No log | 6.2143 | 174 | 0.5933 | 0.7602 | 0.5933 | 0.7703 |
No log | 6.2857 | 176 | 0.5929 | 0.7775 | 0.5929 | 0.7700 |
No log | 6.3571 | 178 | 0.6336 | 0.7775 | 0.6336 | 0.7960 |
No log | 6.4286 | 180 | 0.7250 | 0.7038 | 0.7250 | 0.8515 |
No log | 6.5 | 182 | 0.8433 | 0.6760 | 0.8433 | 0.9183 |
No log | 6.5714 | 184 | 0.8694 | 0.6760 | 0.8694 | 0.9324 |
No log | 6.6429 | 186 | 0.8376 | 0.6716 | 0.8376 | 0.9152 |
No log | 6.7143 | 188 | 0.7636 | 0.6938 | 0.7636 | 0.8738 |
No log | 6.7857 | 190 | 0.7226 | 0.7250 | 0.7226 | 0.8501 |
No log | 6.8571 | 192 | 0.7105 | 0.7420 | 0.7105 | 0.8429 |
No log | 6.9286 | 194 | 0.6798 | 0.7594 | 0.6798 | 0.8245 |
No log | 7.0 | 196 | 0.6944 | 0.7745 | 0.6944 | 0.8333 |
No log | 7.0714 | 198 | 0.7359 | 0.7658 | 0.7359 | 0.8578 |
No log | 7.1429 | 200 | 0.7269 | 0.7273 | 0.7269 | 0.8526 |
No log | 7.2143 | 202 | 0.6949 | 0.7819 | 0.6949 | 0.8336 |
No log | 7.2857 | 204 | 0.6601 | 0.7678 | 0.6601 | 0.8125 |
No log | 7.3571 | 206 | 0.6255 | 0.7182 | 0.6255 | 0.7909 |
No log | 7.4286 | 208 | 0.6185 | 0.7350 | 0.6185 | 0.7865 |
No log | 7.5 | 210 | 0.6120 | 0.7350 | 0.6120 | 0.7823 |
No log | 7.5714 | 212 | 0.6065 | 0.7350 | 0.6065 | 0.7788 |
No log | 7.6429 | 214 | 0.6087 | 0.7182 | 0.6087 | 0.7802 |
No log | 7.7143 | 216 | 0.6264 | 0.7014 | 0.6264 | 0.7915 |
No log | 7.7857 | 218 | 0.6490 | 0.7510 | 0.6490 | 0.8056 |
No log | 7.8571 | 220 | 0.6458 | 0.7014 | 0.6458 | 0.8036 |
No log | 7.9286 | 222 | 0.6349 | 0.7014 | 0.6349 | 0.7968 |
No log | 8.0 | 224 | 0.6333 | 0.7182 | 0.6333 | 0.7958 |
No log | 8.0714 | 226 | 0.6454 | 0.7014 | 0.6454 | 0.8034 |
No log | 8.1429 | 228 | 0.6572 | 0.7014 | 0.6572 | 0.8107 |
No log | 8.2143 | 230 | 0.6740 | 0.7106 | 0.6740 | 0.8210 |
No log | 8.2857 | 232 | 0.6903 | 0.7504 | 0.6903 | 0.8309 |
No log | 8.3571 | 234 | 0.6801 | 0.6738 | 0.6801 | 0.8247 |
No log | 8.4286 | 236 | 0.6545 | 0.7014 | 0.6545 | 0.8090 |
No log | 8.5 | 238 | 0.6319 | 0.7429 | 0.6319 | 0.7949 |
No log | 8.5714 | 240 | 0.6242 | 0.7429 | 0.6242 | 0.7901 |
No log | 8.6429 | 242 | 0.6290 | 0.7429 | 0.6290 | 0.7931 |
No log | 8.7143 | 244 | 0.6318 | 0.7429 | 0.6318 | 0.7949 |
No log | 8.7857 | 246 | 0.6435 | 0.7429 | 0.6435 | 0.8022 |
No log | 8.8571 | 248 | 0.6644 | 0.7157 | 0.6644 | 0.8151 |
No log | 8.9286 | 250 | 0.7006 | 0.7038 | 0.7006 | 0.8370 |
No log | 9.0 | 252 | 0.7446 | 0.7081 | 0.7446 | 0.8629 |
No log | 9.0714 | 254 | 0.7804 | 0.7081 | 0.7804 | 0.8834 |
No log | 9.1429 | 256 | 0.7911 | 0.7081 | 0.7911 | 0.8894 |
No log | 9.2143 | 258 | 0.7857 | 0.7081 | 0.7857 | 0.8864 |
No log | 9.2857 | 260 | 0.7643 | 0.7059 | 0.7643 | 0.8743 |
No log | 9.3571 | 262 | 0.7378 | 0.6620 | 0.7378 | 0.8589 |
No log | 9.4286 | 264 | 0.7191 | 0.6620 | 0.7191 | 0.8480 |
No log | 9.5 | 266 | 0.7094 | 0.6671 | 0.7094 | 0.8423 |
No log | 9.5714 | 268 | 0.6989 | 0.7427 | 0.6989 | 0.8360 |
No log | 9.6429 | 270 | 0.6882 | 0.7427 | 0.6882 | 0.8296 |
No log | 9.7143 | 272 | 0.6811 | 0.7427 | 0.6811 | 0.8253 |
No log | 9.7857 | 274 | 0.6757 | 0.7427 | 0.6757 | 0.8220 |
No log | 9.8571 | 276 | 0.6738 | 0.7427 | 0.6738 | 0.8208 |
No log | 9.9286 | 278 | 0.6730 | 0.7427 | 0.6730 | 0.8204 |
No log | 10.0 | 280 | 0.6733 | 0.7427 | 0.6733 | 0.8205 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k3_task1_organization_fold0
Base model
aubmindlab/bert-base-arabertv02