Arabic_FineTuningAraBERT_AugV0_k4_task1_organization_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8154
- Qwk: 0.6008
- Mse: 0.8154
- Rmse: 0.9030
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0588 | 2 | 5.0129 | -0.0516 | 5.0129 | 2.2389 |
No log | 0.1176 | 4 | 2.8173 | 0.1872 | 2.8173 | 1.6785 |
No log | 0.1765 | 6 | 2.2136 | -0.0383 | 2.2136 | 1.4878 |
No log | 0.2353 | 8 | 1.5361 | 0.0443 | 1.5361 | 1.2394 |
No log | 0.2941 | 10 | 1.2092 | 0.1621 | 1.2092 | 1.0996 |
No log | 0.3529 | 12 | 1.4958 | 0.1075 | 1.4958 | 1.2230 |
No log | 0.4118 | 14 | 1.5388 | 0.1119 | 1.5388 | 1.2405 |
No log | 0.4706 | 16 | 1.5160 | 0.0372 | 1.5160 | 1.2313 |
No log | 0.5294 | 18 | 1.4444 | 0.2145 | 1.4444 | 1.2018 |
No log | 0.5882 | 20 | 1.4664 | 0.1075 | 1.4664 | 1.2109 |
No log | 0.6471 | 22 | 1.5163 | 0.1075 | 1.5163 | 1.2314 |
No log | 0.7059 | 24 | 1.5229 | 0.0801 | 1.5229 | 1.2341 |
No log | 0.7647 | 26 | 1.6039 | 0.0 | 1.6039 | 1.2664 |
No log | 0.8235 | 28 | 1.5753 | 0.0 | 1.5753 | 1.2551 |
No log | 0.8824 | 30 | 1.4861 | 0.1075 | 1.4861 | 1.2191 |
No log | 0.9412 | 32 | 1.4937 | 0.1075 | 1.4937 | 1.2222 |
No log | 1.0 | 34 | 1.4969 | 0.2145 | 1.4969 | 1.2235 |
No log | 1.0588 | 36 | 1.4441 | 0.2145 | 1.4441 | 1.2017 |
No log | 1.1176 | 38 | 1.4261 | 0.2793 | 1.4261 | 1.1942 |
No log | 1.1765 | 40 | 1.2291 | 0.5049 | 1.2291 | 1.1087 |
No log | 1.2353 | 42 | 1.2232 | 0.4489 | 1.2232 | 1.1060 |
No log | 1.2941 | 44 | 1.3270 | 0.4129 | 1.3270 | 1.1519 |
No log | 1.3529 | 46 | 1.7030 | 0.3548 | 1.7030 | 1.3050 |
No log | 1.4118 | 48 | 1.8269 | 0.2278 | 1.8269 | 1.3516 |
No log | 1.4706 | 50 | 1.6784 | 0.2278 | 1.6784 | 1.2955 |
No log | 1.5294 | 52 | 1.3571 | 0.2278 | 1.3571 | 1.1649 |
No log | 1.5882 | 54 | 1.2220 | 0.2793 | 1.2220 | 1.1055 |
No log | 1.6471 | 56 | 1.0662 | 0.3561 | 1.0662 | 1.0326 |
No log | 1.7059 | 58 | 1.0652 | 0.5302 | 1.0652 | 1.0321 |
No log | 1.7647 | 60 | 1.0683 | 0.4375 | 1.0683 | 1.0336 |
No log | 1.8235 | 62 | 1.0448 | 0.5532 | 1.0448 | 1.0221 |
No log | 1.8824 | 64 | 1.1419 | 0.2793 | 1.1419 | 1.0686 |
No log | 1.9412 | 66 | 1.2778 | 0.2536 | 1.2778 | 1.1304 |
No log | 2.0 | 68 | 1.3291 | 0.4104 | 1.3291 | 1.1529 |
No log | 2.0588 | 70 | 1.2572 | 0.3593 | 1.2572 | 1.1212 |
No log | 2.1176 | 72 | 1.1013 | 0.4081 | 1.1013 | 1.0494 |
No log | 2.1765 | 74 | 1.0399 | 0.3531 | 1.0399 | 1.0197 |
No log | 2.2353 | 76 | 1.0430 | 0.3531 | 1.0430 | 1.0213 |
No log | 2.2941 | 78 | 1.1672 | 0.3119 | 1.1672 | 1.0804 |
No log | 2.3529 | 80 | 1.2289 | 0.4571 | 1.2289 | 1.1086 |
No log | 2.4118 | 82 | 1.1399 | 0.4068 | 1.1399 | 1.0676 |
No log | 2.4706 | 84 | 1.0955 | 0.3531 | 1.0955 | 1.0467 |
No log | 2.5294 | 86 | 0.9875 | 0.2435 | 0.9875 | 0.9937 |
No log | 2.5882 | 88 | 1.0009 | 0.4059 | 1.0009 | 1.0005 |
No log | 2.6471 | 90 | 1.0306 | 0.4310 | 1.0306 | 1.0152 |
No log | 2.7059 | 92 | 1.0577 | 0.4015 | 1.0577 | 1.0284 |
No log | 2.7647 | 94 | 1.1296 | 0.3226 | 1.1296 | 1.0628 |
No log | 2.8235 | 96 | 1.2591 | 0.1893 | 1.2591 | 1.1221 |
No log | 2.8824 | 98 | 1.2695 | 0.4783 | 1.2695 | 1.1267 |
No log | 2.9412 | 100 | 1.2468 | 0.4194 | 1.2468 | 1.1166 |
No log | 3.0 | 102 | 1.0005 | 0.6303 | 1.0005 | 1.0002 |
No log | 3.0588 | 104 | 0.9247 | 0.5031 | 0.9247 | 0.9616 |
No log | 3.1176 | 106 | 0.9413 | 0.5973 | 0.9413 | 0.9702 |
No log | 3.1765 | 108 | 1.0525 | 0.5973 | 1.0525 | 1.0259 |
No log | 3.2353 | 110 | 1.3132 | 0.4408 | 1.3132 | 1.1460 |
No log | 3.2941 | 112 | 1.4198 | 0.4415 | 1.4198 | 1.1916 |
No log | 3.3529 | 114 | 1.3006 | 0.3782 | 1.3006 | 1.1404 |
No log | 3.4118 | 116 | 1.0834 | 0.4571 | 1.0834 | 1.0409 |
No log | 3.4706 | 118 | 0.8984 | 0.5260 | 0.8984 | 0.9478 |
No log | 3.5294 | 120 | 0.8354 | 0.5291 | 0.8354 | 0.9140 |
No log | 3.5882 | 122 | 0.8330 | 0.4591 | 0.8330 | 0.9127 |
No log | 3.6471 | 124 | 0.8559 | 0.5291 | 0.8559 | 0.9252 |
No log | 3.7059 | 126 | 0.9729 | 0.5253 | 0.9729 | 0.9863 |
No log | 3.7647 | 128 | 1.1811 | 0.4360 | 1.1811 | 1.0868 |
No log | 3.8235 | 130 | 1.3160 | 0.4167 | 1.3160 | 1.1472 |
No log | 3.8824 | 132 | 1.3168 | 0.3794 | 1.3168 | 1.1475 |
No log | 3.9412 | 134 | 1.1811 | 0.5 | 1.1811 | 1.0868 |
No log | 4.0 | 136 | 0.9728 | 0.5393 | 0.9728 | 0.9863 |
No log | 4.0588 | 138 | 0.8334 | 0.5214 | 0.8334 | 0.9129 |
No log | 4.1176 | 140 | 0.8114 | 0.6239 | 0.8114 | 0.9008 |
No log | 4.1765 | 142 | 0.8147 | 0.6639 | 0.8147 | 0.9026 |
No log | 4.2353 | 144 | 0.8330 | 0.5917 | 0.8330 | 0.9127 |
No log | 4.2941 | 146 | 0.9435 | 0.6303 | 0.9435 | 0.9713 |
No log | 4.3529 | 148 | 1.0325 | 0.5714 | 1.0325 | 1.0161 |
No log | 4.4118 | 150 | 1.0812 | 0.5714 | 1.0812 | 1.0398 |
No log | 4.4706 | 152 | 1.0417 | 0.5896 | 1.0417 | 1.0206 |
No log | 4.5294 | 154 | 1.0208 | 0.5896 | 1.0208 | 1.0103 |
No log | 4.5882 | 156 | 0.9389 | 0.6491 | 0.9389 | 0.9690 |
No log | 4.6471 | 158 | 0.8951 | 0.5933 | 0.8951 | 0.9461 |
No log | 4.7059 | 160 | 0.8325 | 0.6265 | 0.8325 | 0.9124 |
No log | 4.7647 | 162 | 0.8160 | 0.5458 | 0.8160 | 0.9034 |
No log | 4.8235 | 164 | 0.8190 | 0.5270 | 0.8190 | 0.9050 |
No log | 4.8824 | 166 | 0.8467 | 0.5882 | 0.8467 | 0.9202 |
No log | 4.9412 | 168 | 0.8977 | 0.6257 | 0.8977 | 0.9475 |
No log | 5.0 | 170 | 0.9809 | 0.5200 | 0.9809 | 0.9904 |
No log | 5.0588 | 172 | 1.1565 | 0.5188 | 1.1565 | 1.0754 |
No log | 5.1176 | 174 | 1.2126 | 0.4808 | 1.2126 | 1.1012 |
No log | 5.1765 | 176 | 1.1694 | 0.4806 | 1.1694 | 1.0814 |
No log | 5.2353 | 178 | 1.0516 | 0.5769 | 1.0516 | 1.0255 |
No log | 5.2941 | 180 | 0.9614 | 0.5804 | 0.9614 | 0.9805 |
No log | 5.3529 | 182 | 0.9131 | 0.5804 | 0.9131 | 0.9556 |
No log | 5.4118 | 184 | 0.8741 | 0.5804 | 0.8741 | 0.9349 |
No log | 5.4706 | 186 | 0.8905 | 0.5629 | 0.8905 | 0.9437 |
No log | 5.5294 | 188 | 0.8731 | 0.5600 | 0.8731 | 0.9344 |
No log | 5.5882 | 190 | 0.8050 | 0.5629 | 0.8050 | 0.8972 |
No log | 5.6471 | 192 | 0.7582 | 0.6257 | 0.7582 | 0.8707 |
No log | 5.7059 | 194 | 0.7471 | 0.6610 | 0.7471 | 0.8644 |
No log | 5.7647 | 196 | 0.7693 | 0.6610 | 0.7693 | 0.8771 |
No log | 5.8235 | 198 | 0.8422 | 0.6610 | 0.8422 | 0.9177 |
No log | 5.8824 | 200 | 0.9601 | 0.6610 | 0.9601 | 0.9798 |
No log | 5.9412 | 202 | 0.9913 | 0.6161 | 0.9913 | 0.9956 |
No log | 6.0 | 204 | 1.0106 | 0.6161 | 1.0106 | 1.0053 |
No log | 6.0588 | 206 | 0.9522 | 0.6491 | 0.9522 | 0.9758 |
No log | 6.1176 | 208 | 0.9329 | 0.6303 | 0.9329 | 0.9659 |
No log | 6.1765 | 210 | 0.9673 | 0.6303 | 0.9673 | 0.9835 |
No log | 6.2353 | 212 | 1.0462 | 0.5385 | 1.0462 | 1.0228 |
No log | 6.2941 | 214 | 1.1080 | 0.5556 | 1.1080 | 1.0526 |
No log | 6.3529 | 216 | 1.0823 | 0.5581 | 1.0823 | 1.0403 |
No log | 6.4118 | 218 | 0.9983 | 0.5581 | 0.9983 | 0.9991 |
No log | 6.4706 | 220 | 0.9298 | 0.5581 | 0.9298 | 0.9643 |
No log | 6.5294 | 222 | 0.8591 | 0.5581 | 0.8591 | 0.9269 |
No log | 6.5882 | 224 | 0.8290 | 0.5581 | 0.8290 | 0.9105 |
No log | 6.6471 | 226 | 0.8368 | 0.6161 | 0.8368 | 0.9147 |
No log | 6.7059 | 228 | 0.8911 | 0.5581 | 0.8911 | 0.9440 |
No log | 6.7647 | 230 | 1.0036 | 0.5581 | 1.0036 | 1.0018 |
No log | 6.8235 | 232 | 1.1029 | 0.5185 | 1.1029 | 1.0502 |
No log | 6.8824 | 234 | 1.1714 | 0.4803 | 1.1714 | 1.0823 |
No log | 6.9412 | 236 | 1.1705 | 0.4806 | 1.1705 | 1.0819 |
No log | 7.0 | 238 | 1.1237 | 0.4806 | 1.1237 | 1.0600 |
No log | 7.0588 | 240 | 1.0565 | 0.4806 | 1.0565 | 1.0278 |
No log | 7.1176 | 242 | 0.9915 | 0.5188 | 0.9915 | 0.9957 |
No log | 7.1765 | 244 | 0.9381 | 0.5629 | 0.9381 | 0.9686 |
No log | 7.2353 | 246 | 0.8931 | 0.5629 | 0.8931 | 0.9450 |
No log | 7.2941 | 248 | 0.8725 | 0.5629 | 0.8725 | 0.9341 |
No log | 7.3529 | 250 | 0.8462 | 0.5629 | 0.8462 | 0.9199 |
No log | 7.4118 | 252 | 0.8038 | 0.5629 | 0.8038 | 0.8965 |
No log | 7.4706 | 254 | 0.7685 | 0.5629 | 0.7685 | 0.8766 |
No log | 7.5294 | 256 | 0.7442 | 0.5629 | 0.7442 | 0.8627 |
No log | 7.5882 | 258 | 0.7239 | 0.6008 | 0.7239 | 0.8508 |
No log | 7.6471 | 260 | 0.7166 | 0.6610 | 0.7166 | 0.8465 |
No log | 7.7059 | 262 | 0.7221 | 0.6610 | 0.7221 | 0.8497 |
No log | 7.7647 | 264 | 0.7514 | 0.6610 | 0.7514 | 0.8668 |
No log | 7.8235 | 266 | 0.7865 | 0.6610 | 0.7865 | 0.8869 |
No log | 7.8824 | 268 | 0.8232 | 0.6008 | 0.8232 | 0.9073 |
No log | 7.9412 | 270 | 0.8960 | 0.5965 | 0.8960 | 0.9466 |
No log | 8.0 | 272 | 0.9492 | 0.5965 | 0.9492 | 0.9743 |
No log | 8.0588 | 274 | 0.9536 | 0.5965 | 0.9536 | 0.9765 |
No log | 8.1176 | 276 | 0.9515 | 0.5965 | 0.9515 | 0.9755 |
No log | 8.1765 | 278 | 0.9126 | 0.5965 | 0.9126 | 0.9553 |
No log | 8.2353 | 280 | 0.8606 | 0.6545 | 0.8606 | 0.9277 |
No log | 8.2941 | 282 | 0.8099 | 0.6545 | 0.8099 | 0.9000 |
No log | 8.3529 | 284 | 0.7997 | 0.6545 | 0.7997 | 0.8942 |
No log | 8.4118 | 286 | 0.8092 | 0.6545 | 0.8092 | 0.8995 |
No log | 8.4706 | 288 | 0.8134 | 0.6545 | 0.8134 | 0.9019 |
No log | 8.5294 | 290 | 0.8376 | 0.6008 | 0.8376 | 0.9152 |
No log | 8.5882 | 292 | 0.8403 | 0.5629 | 0.8403 | 0.9167 |
No log | 8.6471 | 294 | 0.8367 | 0.5629 | 0.8367 | 0.9147 |
No log | 8.7059 | 296 | 0.8215 | 0.5629 | 0.8215 | 0.9064 |
No log | 8.7647 | 298 | 0.7958 | 0.6008 | 0.7958 | 0.8921 |
No log | 8.8235 | 300 | 0.7767 | 0.6008 | 0.7767 | 0.8813 |
No log | 8.8824 | 302 | 0.7571 | 0.6008 | 0.7571 | 0.8701 |
No log | 8.9412 | 304 | 0.7570 | 0.6008 | 0.7570 | 0.8701 |
No log | 9.0 | 306 | 0.7614 | 0.6008 | 0.7614 | 0.8726 |
No log | 9.0588 | 308 | 0.7724 | 0.5629 | 0.7724 | 0.8789 |
No log | 9.1176 | 310 | 0.7734 | 0.5629 | 0.7734 | 0.8794 |
No log | 9.1765 | 312 | 0.7722 | 0.5629 | 0.7722 | 0.8787 |
No log | 9.2353 | 314 | 0.7636 | 0.5629 | 0.7636 | 0.8738 |
No log | 9.2941 | 316 | 0.7599 | 0.5629 | 0.7599 | 0.8717 |
No log | 9.3529 | 318 | 0.7606 | 0.6008 | 0.7606 | 0.8721 |
No log | 9.4118 | 320 | 0.7642 | 0.6008 | 0.7642 | 0.8742 |
No log | 9.4706 | 322 | 0.7705 | 0.6008 | 0.7705 | 0.8778 |
No log | 9.5294 | 324 | 0.7825 | 0.6008 | 0.7825 | 0.8846 |
No log | 9.5882 | 326 | 0.7944 | 0.6008 | 0.7944 | 0.8913 |
No log | 9.6471 | 328 | 0.8023 | 0.6008 | 0.8023 | 0.8957 |
No log | 9.7059 | 330 | 0.8083 | 0.6008 | 0.8083 | 0.8991 |
No log | 9.7647 | 332 | 0.8122 | 0.6008 | 0.8122 | 0.9012 |
No log | 9.8235 | 334 | 0.8148 | 0.6008 | 0.8148 | 0.9026 |
No log | 9.8824 | 336 | 0.8165 | 0.6008 | 0.8165 | 0.9036 |
No log | 9.9412 | 338 | 0.8158 | 0.6008 | 0.8158 | 0.9032 |
No log | 10.0 | 340 | 0.8154 | 0.6008 | 0.8154 | 0.9030 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k4_task1_organization_fold0
Base model
aubmindlab/bert-base-arabertv02