Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7707
- Qwk: 0.7576
- Mse: 0.7707
- Rmse: 0.8779
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0513 | 2 | 4.6963 | 0.0512 | 4.6963 | 2.1671 |
No log | 0.1026 | 4 | 2.6587 | 0.2075 | 2.6587 | 1.6306 |
No log | 0.1538 | 6 | 1.5451 | 0.1312 | 1.5451 | 1.2430 |
No log | 0.2051 | 8 | 1.3150 | 0.2241 | 1.3150 | 1.1467 |
No log | 0.2564 | 10 | 1.6117 | 0.1391 | 1.6117 | 1.2695 |
No log | 0.3077 | 12 | 1.7262 | 0.0050 | 1.7262 | 1.3138 |
No log | 0.3590 | 14 | 1.5949 | 0.0801 | 1.5949 | 1.2629 |
No log | 0.4103 | 16 | 1.3723 | 0.2416 | 1.3723 | 1.1714 |
No log | 0.4615 | 18 | 1.5349 | 0.0490 | 1.5349 | 1.2389 |
No log | 0.5128 | 20 | 1.8348 | 0.1139 | 1.8348 | 1.3545 |
No log | 0.5641 | 22 | 1.4962 | 0.0 | 1.4962 | 1.2232 |
No log | 0.6154 | 24 | 1.2684 | 0.4310 | 1.2684 | 1.1262 |
No log | 0.6667 | 26 | 1.4050 | 0.1873 | 1.4050 | 1.1853 |
No log | 0.7179 | 28 | 1.4856 | 0.1348 | 1.4856 | 1.2189 |
No log | 0.7692 | 30 | 1.3743 | 0.1391 | 1.3743 | 1.1723 |
No log | 0.8205 | 32 | 1.4283 | 0.1119 | 1.4283 | 1.1951 |
No log | 0.8718 | 34 | 1.6024 | 0.1370 | 1.6024 | 1.2659 |
No log | 0.9231 | 36 | 1.5973 | 0.0300 | 1.5973 | 1.2638 |
No log | 0.9744 | 38 | 1.5907 | 0.1500 | 1.5907 | 1.2612 |
No log | 1.0256 | 40 | 1.6646 | 0.2611 | 1.6646 | 1.2902 |
No log | 1.0769 | 42 | 1.6029 | 0.2711 | 1.6029 | 1.2661 |
No log | 1.1282 | 44 | 1.4742 | 0.1500 | 1.4742 | 1.2142 |
No log | 1.1795 | 46 | 1.3571 | 0.2518 | 1.3571 | 1.1649 |
No log | 1.2308 | 48 | 1.2628 | 0.2776 | 1.2628 | 1.1238 |
No log | 1.2821 | 50 | 1.1896 | 0.2776 | 1.1896 | 1.0907 |
No log | 1.3333 | 52 | 1.1146 | 0.2435 | 1.1146 | 1.0558 |
No log | 1.3846 | 54 | 1.0737 | 0.2435 | 1.0737 | 1.0362 |
No log | 1.4359 | 56 | 1.0344 | 0.2454 | 1.0344 | 1.0171 |
No log | 1.4872 | 58 | 1.0301 | 0.3546 | 1.0301 | 1.0150 |
No log | 1.5385 | 60 | 1.0234 | 0.3546 | 1.0234 | 1.0117 |
No log | 1.5897 | 62 | 1.0075 | 0.3546 | 1.0075 | 1.0038 |
No log | 1.6410 | 64 | 1.0326 | 0.4555 | 1.0326 | 1.0162 |
No log | 1.6923 | 66 | 1.0653 | 0.5484 | 1.0653 | 1.0321 |
No log | 1.7436 | 68 | 1.1390 | 0.5243 | 1.1390 | 1.0673 |
No log | 1.7949 | 70 | 1.1314 | 0.5243 | 1.1314 | 1.0637 |
No log | 1.8462 | 72 | 1.1287 | 0.5011 | 1.1287 | 1.0624 |
No log | 1.8974 | 74 | 1.0937 | 0.5011 | 1.0937 | 1.0458 |
No log | 1.9487 | 76 | 1.1883 | 0.5204 | 1.1883 | 1.0901 |
No log | 2.0 | 78 | 1.1590 | 0.5417 | 1.1590 | 1.0766 |
No log | 2.0513 | 80 | 1.0537 | 0.5661 | 1.0537 | 1.0265 |
No log | 2.1026 | 82 | 0.9748 | 0.4797 | 0.9748 | 0.9873 |
No log | 2.1538 | 84 | 0.9595 | 0.4797 | 0.9595 | 0.9796 |
No log | 2.2051 | 86 | 0.9454 | 0.5679 | 0.9454 | 0.9723 |
No log | 2.2564 | 88 | 0.9212 | 0.5043 | 0.9212 | 0.9598 |
No log | 2.3077 | 90 | 0.8703 | 0.5494 | 0.8703 | 0.9329 |
No log | 2.3590 | 92 | 0.8984 | 0.6323 | 0.8984 | 0.9479 |
No log | 2.4103 | 94 | 1.0262 | 0.5638 | 1.0262 | 1.0130 |
No log | 2.4615 | 96 | 0.9829 | 0.4807 | 0.9829 | 0.9914 |
No log | 2.5128 | 98 | 0.8922 | 0.5020 | 0.8922 | 0.9446 |
No log | 2.5641 | 100 | 0.7934 | 0.6272 | 0.7934 | 0.8907 |
No log | 2.6154 | 102 | 0.7458 | 0.6550 | 0.7458 | 0.8636 |
No log | 2.6667 | 104 | 0.7198 | 0.7321 | 0.7198 | 0.8484 |
No log | 2.7179 | 106 | 0.7429 | 0.7025 | 0.7429 | 0.8619 |
No log | 2.7692 | 108 | 0.7712 | 0.6023 | 0.7712 | 0.8782 |
No log | 2.8205 | 110 | 0.8170 | 0.5785 | 0.8170 | 0.9039 |
No log | 2.8718 | 112 | 0.9368 | 0.5004 | 0.9368 | 0.9679 |
No log | 2.9231 | 114 | 0.9925 | 0.5349 | 0.9925 | 0.9962 |
No log | 2.9744 | 116 | 0.9268 | 0.5366 | 0.9268 | 0.9627 |
No log | 3.0256 | 118 | 0.8453 | 0.5218 | 0.8453 | 0.9194 |
No log | 3.0769 | 120 | 0.7938 | 0.5422 | 0.7938 | 0.8909 |
No log | 3.1282 | 122 | 0.8459 | 0.5205 | 0.8459 | 0.9197 |
No log | 3.1795 | 124 | 0.8118 | 0.5752 | 0.8118 | 0.9010 |
No log | 3.2308 | 126 | 0.7268 | 0.6420 | 0.7268 | 0.8525 |
No log | 3.2821 | 128 | 0.6940 | 0.6824 | 0.6940 | 0.8331 |
No log | 3.3333 | 130 | 0.6935 | 0.6824 | 0.6935 | 0.8328 |
No log | 3.3846 | 132 | 0.7148 | 0.6225 | 0.7148 | 0.8455 |
No log | 3.4359 | 134 | 0.8006 | 0.6309 | 0.8006 | 0.8948 |
No log | 3.4872 | 136 | 0.8836 | 0.5540 | 0.8836 | 0.9400 |
No log | 3.5385 | 138 | 0.9300 | 0.5532 | 0.9300 | 0.9644 |
No log | 3.5897 | 140 | 0.9075 | 0.5714 | 0.9075 | 0.9526 |
No log | 3.6410 | 142 | 0.8476 | 0.6356 | 0.8476 | 0.9206 |
No log | 3.6923 | 144 | 0.9058 | 0.6303 | 0.9058 | 0.9517 |
No log | 3.7436 | 146 | 1.0258 | 0.5349 | 1.0258 | 1.0128 |
No log | 3.7949 | 148 | 1.0290 | 0.5489 | 1.0290 | 1.0144 |
No log | 3.8462 | 150 | 0.8547 | 0.6356 | 0.8547 | 0.9245 |
No log | 3.8974 | 152 | 0.7195 | 0.6225 | 0.7195 | 0.8483 |
No log | 3.9487 | 154 | 0.6912 | 0.6824 | 0.6912 | 0.8314 |
No log | 4.0 | 156 | 0.7483 | 0.6934 | 0.7483 | 0.8651 |
No log | 4.0513 | 158 | 0.8263 | 0.6253 | 0.8263 | 0.9090 |
No log | 4.1026 | 160 | 0.7983 | 0.6791 | 0.7983 | 0.8935 |
No log | 4.1538 | 162 | 0.7378 | 0.6860 | 0.7378 | 0.8589 |
No log | 4.2051 | 164 | 0.6791 | 0.6225 | 0.6791 | 0.8241 |
No log | 4.2564 | 166 | 0.6811 | 0.6818 | 0.6811 | 0.8253 |
No log | 4.3077 | 168 | 0.7195 | 0.6309 | 0.7195 | 0.8482 |
No log | 4.3590 | 170 | 0.7909 | 0.6260 | 0.7909 | 0.8893 |
No log | 4.4103 | 172 | 0.8198 | 0.6732 | 0.8198 | 0.9054 |
No log | 4.4615 | 174 | 0.7936 | 0.6732 | 0.7936 | 0.8909 |
No log | 4.5128 | 176 | 0.7145 | 0.7333 | 0.7145 | 0.8453 |
No log | 4.5641 | 178 | 0.6334 | 0.6757 | 0.6334 | 0.7959 |
No log | 4.6154 | 180 | 0.6097 | 0.6757 | 0.6097 | 0.7808 |
No log | 4.6667 | 182 | 0.6360 | 0.7516 | 0.6360 | 0.7975 |
No log | 4.7179 | 184 | 0.7418 | 0.7764 | 0.7418 | 0.8613 |
No log | 4.7692 | 186 | 0.7842 | 0.7670 | 0.7842 | 0.8856 |
No log | 4.8205 | 188 | 0.7546 | 0.7670 | 0.7546 | 0.8687 |
No log | 4.8718 | 190 | 0.7350 | 0.7764 | 0.7350 | 0.8573 |
No log | 4.9231 | 192 | 0.7037 | 0.7864 | 0.7037 | 0.8389 |
No log | 4.9744 | 194 | 0.6977 | 0.7864 | 0.6977 | 0.8353 |
No log | 5.0256 | 196 | 0.7737 | 0.7169 | 0.7737 | 0.8796 |
No log | 5.0769 | 198 | 0.8910 | 0.6769 | 0.8910 | 0.9439 |
No log | 5.1282 | 200 | 0.8860 | 0.6769 | 0.8860 | 0.9413 |
No log | 5.1795 | 202 | 0.8939 | 0.6811 | 0.8939 | 0.9455 |
No log | 5.2308 | 204 | 0.8592 | 0.6965 | 0.8592 | 0.9270 |
No log | 5.2821 | 206 | 0.8582 | 0.6965 | 0.8582 | 0.9264 |
No log | 5.3333 | 208 | 0.8238 | 0.7422 | 0.8238 | 0.9077 |
No log | 5.3846 | 210 | 0.7685 | 0.8171 | 0.7685 | 0.8766 |
No log | 5.4359 | 212 | 0.6986 | 0.7864 | 0.6986 | 0.8358 |
No log | 5.4872 | 214 | 0.6802 | 0.7864 | 0.6802 | 0.8248 |
No log | 5.5385 | 216 | 0.7062 | 0.7328 | 0.7062 | 0.8404 |
No log | 5.5897 | 218 | 0.8059 | 0.7422 | 0.8059 | 0.8977 |
No log | 5.6410 | 220 | 0.8359 | 0.7422 | 0.8359 | 0.9143 |
No log | 5.6923 | 222 | 0.7817 | 0.7422 | 0.7817 | 0.8841 |
No log | 5.7436 | 224 | 0.7734 | 0.7422 | 0.7734 | 0.8794 |
No log | 5.7949 | 226 | 0.8506 | 0.6965 | 0.8506 | 0.9223 |
No log | 5.8462 | 228 | 0.9084 | 0.6811 | 0.9084 | 0.9531 |
No log | 5.8974 | 230 | 0.9446 | 0.6811 | 0.9446 | 0.9719 |
No log | 5.9487 | 232 | 0.9839 | 0.6811 | 0.9839 | 0.9919 |
No log | 6.0 | 234 | 0.9530 | 0.6811 | 0.9530 | 0.9762 |
No log | 6.0513 | 236 | 0.8703 | 0.6811 | 0.8703 | 0.9329 |
No log | 6.1026 | 238 | 0.7702 | 0.6610 | 0.7702 | 0.8776 |
No log | 6.1538 | 240 | 0.7159 | 0.6791 | 0.7159 | 0.8461 |
No log | 6.2051 | 242 | 0.6992 | 0.7670 | 0.6992 | 0.8362 |
No log | 6.2564 | 244 | 0.7328 | 0.7670 | 0.7328 | 0.8560 |
No log | 6.3077 | 246 | 0.7680 | 0.7583 | 0.7680 | 0.8764 |
No log | 6.3590 | 248 | 0.7468 | 0.7670 | 0.7468 | 0.8642 |
No log | 6.4103 | 250 | 0.7023 | 0.7670 | 0.7023 | 0.8380 |
No log | 6.4615 | 252 | 0.6552 | 0.8171 | 0.6552 | 0.8094 |
No log | 6.5128 | 254 | 0.6357 | 0.8171 | 0.6357 | 0.7973 |
No log | 6.5641 | 256 | 0.6466 | 0.8070 | 0.6466 | 0.8041 |
No log | 6.6154 | 258 | 0.7147 | 0.7586 | 0.7147 | 0.8454 |
No log | 6.6667 | 260 | 0.8009 | 0.7059 | 0.8009 | 0.8950 |
No log | 6.7179 | 262 | 0.8445 | 0.6662 | 0.8445 | 0.9190 |
No log | 6.7692 | 264 | 0.9002 | 0.6704 | 0.9002 | 0.9488 |
No log | 6.8205 | 266 | 0.8649 | 0.6704 | 0.8649 | 0.9300 |
No log | 6.8718 | 268 | 0.7567 | 0.7944 | 0.7567 | 0.8699 |
No log | 6.9231 | 270 | 0.6455 | 0.8070 | 0.6455 | 0.8034 |
No log | 6.9744 | 272 | 0.6223 | 0.8070 | 0.6223 | 0.7889 |
No log | 7.0256 | 274 | 0.6446 | 0.8070 | 0.6446 | 0.8028 |
No log | 7.0769 | 276 | 0.7030 | 0.7586 | 0.7030 | 0.8385 |
No log | 7.1282 | 278 | 0.7739 | 0.7426 | 0.7739 | 0.8797 |
No log | 7.1795 | 280 | 0.7819 | 0.7429 | 0.7819 | 0.8843 |
No log | 7.2308 | 282 | 0.7344 | 0.7426 | 0.7344 | 0.8570 |
No log | 7.2821 | 284 | 0.6858 | 0.8070 | 0.6858 | 0.8281 |
No log | 7.3333 | 286 | 0.6722 | 0.8070 | 0.6722 | 0.8199 |
No log | 7.3846 | 288 | 0.6435 | 0.8070 | 0.6435 | 0.8022 |
No log | 7.4359 | 290 | 0.6610 | 0.8070 | 0.6610 | 0.8130 |
No log | 7.4872 | 292 | 0.6953 | 0.7504 | 0.6953 | 0.8338 |
No log | 7.5385 | 294 | 0.7188 | 0.7583 | 0.7188 | 0.8478 |
No log | 7.5897 | 296 | 0.7005 | 0.7583 | 0.7005 | 0.8369 |
No log | 7.6410 | 298 | 0.6973 | 0.7670 | 0.6973 | 0.8350 |
No log | 7.6923 | 300 | 0.6909 | 0.7670 | 0.6909 | 0.8312 |
No log | 7.7436 | 302 | 0.7029 | 0.7658 | 0.7029 | 0.8384 |
No log | 7.7949 | 304 | 0.7340 | 0.7576 | 0.7340 | 0.8567 |
No log | 7.8462 | 306 | 0.7512 | 0.7576 | 0.7512 | 0.8667 |
No log | 7.8974 | 308 | 0.7323 | 0.7576 | 0.7323 | 0.8557 |
No log | 7.9487 | 310 | 0.7341 | 0.7579 | 0.7341 | 0.8568 |
No log | 8.0 | 312 | 0.7289 | 0.7579 | 0.7289 | 0.8537 |
No log | 8.0513 | 314 | 0.7382 | 0.7579 | 0.7382 | 0.8592 |
No log | 8.1026 | 316 | 0.7256 | 0.7579 | 0.7256 | 0.8518 |
No log | 8.1538 | 318 | 0.7236 | 0.7579 | 0.7236 | 0.8506 |
No log | 8.2051 | 320 | 0.7482 | 0.7502 | 0.7482 | 0.8650 |
No log | 8.2564 | 322 | 0.7599 | 0.7502 | 0.7599 | 0.8717 |
No log | 8.3077 | 324 | 0.7546 | 0.7502 | 0.7546 | 0.8687 |
No log | 8.3590 | 326 | 0.7741 | 0.7502 | 0.7741 | 0.8798 |
No log | 8.4103 | 328 | 0.7839 | 0.7502 | 0.7839 | 0.8854 |
No log | 8.4615 | 330 | 0.8150 | 0.7143 | 0.8150 | 0.9028 |
No log | 8.5128 | 332 | 0.8256 | 0.7055 | 0.8256 | 0.9086 |
No log | 8.5641 | 334 | 0.8191 | 0.7422 | 0.8191 | 0.9050 |
No log | 8.6154 | 336 | 0.8028 | 0.7422 | 0.8028 | 0.8960 |
No log | 8.6667 | 338 | 0.7993 | 0.7422 | 0.7993 | 0.8940 |
No log | 8.7179 | 340 | 0.7979 | 0.7422 | 0.7979 | 0.8932 |
No log | 8.7692 | 342 | 0.8110 | 0.7422 | 0.8110 | 0.9006 |
No log | 8.8205 | 344 | 0.8374 | 0.7055 | 0.8374 | 0.9151 |
No log | 8.8718 | 346 | 0.8500 | 0.6998 | 0.8500 | 0.9220 |
No log | 8.9231 | 348 | 0.8398 | 0.7143 | 0.8398 | 0.9164 |
No log | 8.9744 | 350 | 0.8324 | 0.7143 | 0.8324 | 0.9124 |
No log | 9.0256 | 352 | 0.8066 | 0.7143 | 0.8066 | 0.8981 |
No log | 9.0769 | 354 | 0.7907 | 0.7502 | 0.7907 | 0.8892 |
No log | 9.1282 | 356 | 0.7780 | 0.7502 | 0.7780 | 0.8821 |
No log | 9.1795 | 358 | 0.7648 | 0.7502 | 0.7648 | 0.8745 |
No log | 9.2308 | 360 | 0.7516 | 0.7579 | 0.7516 | 0.8670 |
No log | 9.2821 | 362 | 0.7361 | 0.7579 | 0.7361 | 0.8579 |
No log | 9.3333 | 364 | 0.7270 | 0.7579 | 0.7270 | 0.8526 |
No log | 9.3846 | 366 | 0.7223 | 0.7579 | 0.7223 | 0.8499 |
No log | 9.4359 | 368 | 0.7196 | 0.7579 | 0.7196 | 0.8483 |
No log | 9.4872 | 370 | 0.7215 | 0.7579 | 0.7215 | 0.8494 |
No log | 9.5385 | 372 | 0.7263 | 0.7579 | 0.7263 | 0.8522 |
No log | 9.5897 | 374 | 0.7371 | 0.7579 | 0.7371 | 0.8585 |
No log | 9.6410 | 376 | 0.7441 | 0.7579 | 0.7441 | 0.8626 |
No log | 9.6923 | 378 | 0.7507 | 0.7502 | 0.7507 | 0.8664 |
No log | 9.7436 | 380 | 0.7592 | 0.7502 | 0.7592 | 0.8713 |
No log | 9.7949 | 382 | 0.7656 | 0.7502 | 0.7656 | 0.8750 |
No log | 9.8462 | 384 | 0.7689 | 0.7502 | 0.7689 | 0.8769 |
No log | 9.8974 | 386 | 0.7698 | 0.7502 | 0.7698 | 0.8774 |
No log | 9.9487 | 388 | 0.7700 | 0.7502 | 0.7700 | 0.8775 |
No log | 10.0 | 390 | 0.7707 | 0.7576 | 0.7707 | 0.8779 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold0
Base model
aubmindlab/bert-base-arabertv02