Edit model card

Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4618
  • Qwk: 0.75
  • Mse: 0.4618
  • Rmse: 0.6796

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0556 2 3.0933 0.0397 3.0933 1.7588
No log 0.1111 4 1.6453 -0.0302 1.6453 1.2827
No log 0.1667 6 0.8864 0.1250 0.8864 0.9415
No log 0.2222 8 0.7494 0.4057 0.7494 0.8657
No log 0.2778 10 0.9006 0.3982 0.9006 0.9490
No log 0.3333 12 0.6438 0.4731 0.6438 0.8024
No log 0.3889 14 0.7107 0.4556 0.7107 0.8430
No log 0.4444 16 0.7383 0.5070 0.7383 0.8592
No log 0.5 18 0.5348 0.6084 0.5348 0.7313
No log 0.5556 20 0.4752 0.7535 0.4752 0.6894
No log 0.6111 22 0.4653 0.7535 0.4653 0.6822
No log 0.6667 24 0.4518 0.7921 0.4518 0.6722
No log 0.7222 26 0.5582 0.6456 0.5582 0.7471
No log 0.7778 28 0.5140 0.6392 0.5140 0.7169
No log 0.8333 30 0.4498 0.7222 0.4498 0.6706
No log 0.8889 32 0.4348 0.6903 0.4348 0.6594
No log 0.9444 34 0.4718 0.6038 0.4718 0.6869
No log 1.0 36 0.4420 0.5806 0.4420 0.6648
No log 1.0556 38 0.5700 0.4251 0.5700 0.7550
No log 1.1111 40 0.7186 0.5259 0.7186 0.8477
No log 1.1667 42 0.8364 0.4865 0.8364 0.9145
No log 1.2222 44 0.7109 0.5259 0.7109 0.8431
No log 1.2778 46 0.5414 0.4724 0.5414 0.7358
No log 1.3333 48 0.4997 0.5806 0.4997 0.7069
No log 1.3889 50 0.5037 0.5806 0.5037 0.7097
No log 1.4444 52 0.5170 0.6578 0.5170 0.7190
No log 1.5 54 0.4995 0.6578 0.4995 0.7067
No log 1.5556 56 0.4969 0.6094 0.4969 0.7049
No log 1.6111 58 0.5579 0.6908 0.5579 0.7469
No log 1.6667 60 0.5519 0.6715 0.5519 0.7429
No log 1.7222 62 0.4589 0.6912 0.4589 0.6775
No log 1.7778 64 0.4396 0.6889 0.4396 0.6630
No log 1.8333 66 0.5894 0.6431 0.5894 0.7677
No log 1.8889 68 0.5162 0.6125 0.5162 0.7185
No log 1.9444 70 0.4232 0.7116 0.4232 0.6505
No log 2.0 72 0.5512 0.6557 0.5512 0.7425
No log 2.0556 74 0.6622 0.3982 0.6622 0.8137
No log 2.1111 76 0.5814 0.5792 0.5814 0.7625
No log 2.1667 78 0.4582 0.6075 0.4582 0.6769
No log 2.2222 80 0.4246 0.6192 0.4246 0.6516
No log 2.2778 82 0.4312 0.7529 0.4312 0.6566
No log 2.3333 84 0.4299 0.7279 0.4299 0.6557
No log 2.3889 86 0.4313 0.7279 0.4313 0.6567
No log 2.4444 88 0.4385 0.7279 0.4385 0.6622
No log 2.5 90 0.4019 0.7508 0.4019 0.6340
No log 2.5556 92 0.4109 0.7336 0.4109 0.6410
No log 2.6111 94 0.4612 0.7279 0.4612 0.6791
No log 2.6667 96 0.6360 0.7308 0.6360 0.7975
No log 2.7222 98 0.6027 0.7308 0.6027 0.7763
No log 2.7778 100 0.4333 0.7279 0.4333 0.6582
No log 2.8333 102 0.3465 0.7640 0.3465 0.5887
No log 2.8889 104 0.3522 0.6857 0.3522 0.5935
No log 2.9444 106 0.3756 0.7529 0.3756 0.6129
No log 3.0 108 0.5107 0.6831 0.5107 0.7147
No log 3.0556 110 0.5991 0.5917 0.5991 0.7740
No log 3.1111 112 0.5363 0.6831 0.5363 0.7323
No log 3.1667 114 0.4526 0.7319 0.4526 0.6728
No log 3.2222 116 0.4067 0.7287 0.4067 0.6377
No log 3.2778 118 0.4169 0.7529 0.4169 0.6457
No log 3.3333 120 0.4835 0.7319 0.4835 0.6954
No log 3.3889 122 0.5446 0.7154 0.5446 0.7380
No log 3.4444 124 0.4873 0.7279 0.4873 0.6981
No log 3.5 126 0.4405 0.7063 0.4405 0.6637
No log 3.5556 128 0.4086 0.7535 0.4086 0.6392
No log 3.6111 130 0.4133 0.8239 0.4133 0.6429
No log 3.6667 132 0.3964 0.7907 0.3964 0.6296
No log 3.7222 134 0.4214 0.7279 0.4214 0.6492
No log 3.7778 136 0.5588 0.7354 0.5588 0.7475
No log 3.8333 138 0.5451 0.7354 0.5451 0.7383
No log 3.8889 140 0.5140 0.7354 0.5140 0.7170
No log 3.9444 142 0.3896 0.7658 0.3896 0.6242
No log 4.0 144 0.3400 0.7879 0.3400 0.5831
No log 4.0556 146 0.3456 0.7879 0.3456 0.5879
No log 4.1111 148 0.3847 0.7829 0.3847 0.6202
No log 4.1667 150 0.4678 0.75 0.4678 0.6840
No log 4.2222 152 0.5004 0.7308 0.5004 0.7074
No log 4.2778 154 0.4816 0.7605 0.4816 0.6940
No log 4.3333 156 0.4361 0.7063 0.4361 0.6604
No log 4.3889 158 0.4254 0.7123 0.4254 0.6522
No log 4.4444 160 0.4357 0.7063 0.4357 0.6601
No log 4.5 162 0.4579 0.75 0.4579 0.6767
No log 4.5556 164 0.4452 0.75 0.4452 0.6672
No log 4.6111 166 0.3989 0.6978 0.3989 0.6316
No log 4.6667 168 0.3777 0.7535 0.3777 0.6146
No log 4.7222 170 0.3713 0.7260 0.3713 0.6094
No log 4.7778 172 0.3874 0.72 0.3874 0.6225
No log 4.8333 174 0.4601 0.75 0.4601 0.6783
No log 4.8889 176 0.4732 0.75 0.4732 0.6879
No log 4.9444 178 0.4075 0.7279 0.4075 0.6384
No log 5.0 180 0.3984 0.7279 0.3984 0.6312
No log 5.0556 182 0.4473 0.75 0.4473 0.6688
No log 5.1111 184 0.4503 0.75 0.4503 0.6710
No log 5.1667 186 0.4286 0.7279 0.4286 0.6547
No log 5.2222 188 0.4776 0.75 0.4776 0.6911
No log 5.2778 190 0.4545 0.75 0.4545 0.6742
No log 5.3333 192 0.4016 0.7279 0.4016 0.6337
No log 5.3889 194 0.4053 0.75 0.4053 0.6367
No log 5.4444 196 0.4571 0.75 0.4571 0.6761
No log 5.5 198 0.4388 0.75 0.4388 0.6624
No log 5.5556 200 0.4189 0.75 0.4189 0.6472
No log 5.6111 202 0.4415 0.75 0.4415 0.6644
No log 5.6667 204 0.5136 0.7605 0.5136 0.7167
No log 5.7222 206 0.5840 0.7308 0.5840 0.7642
No log 5.7778 208 0.6431 0.7308 0.6431 0.8019
No log 5.8333 210 0.6795 0.5817 0.6795 0.8243
No log 5.8889 212 0.5915 0.6831 0.5915 0.7691
No log 5.9444 214 0.5359 0.6831 0.5359 0.7320
No log 6.0 216 0.4889 0.7778 0.4889 0.6992
No log 6.0556 218 0.5029 0.7605 0.5029 0.7092
No log 6.1111 220 0.5338 0.7605 0.5338 0.7306
No log 6.1667 222 0.5857 0.7605 0.5857 0.7653
No log 6.2222 224 0.6538 0.7605 0.6538 0.8086
No log 6.2778 226 0.6287 0.7605 0.6287 0.7929
No log 6.3333 228 0.5211 0.7605 0.5211 0.7219
No log 6.3889 230 0.4404 0.7063 0.4404 0.6636
No log 6.4444 232 0.4278 0.6851 0.4278 0.6541
No log 6.5 234 0.4328 0.6851 0.4328 0.6579
No log 6.5556 236 0.4659 0.7279 0.4659 0.6825
No log 6.6111 238 0.5637 0.7605 0.5637 0.7508
No log 6.6667 240 0.6095 0.7605 0.6095 0.7807
No log 6.7222 242 0.6345 0.7605 0.6345 0.7966
No log 6.7778 244 0.6299 0.7605 0.6299 0.7937
No log 6.8333 246 0.5537 0.7605 0.5537 0.7441
No log 6.8889 248 0.4638 0.75 0.4638 0.6810
No log 6.9444 250 0.4001 0.6818 0.4001 0.6325
No log 7.0 252 0.3931 0.7027 0.3931 0.6270
No log 7.0556 254 0.3994 0.6160 0.3994 0.6320
No log 7.1111 256 0.3971 0.6286 0.3971 0.6302
No log 7.1667 258 0.4116 0.7287 0.4116 0.6415
No log 7.2222 260 0.4721 0.7658 0.4721 0.6871
No log 7.2778 262 0.5399 0.7154 0.5399 0.7348
No log 7.3333 264 0.5713 0.7154 0.5713 0.7559
No log 7.3889 266 0.5490 0.7154 0.5490 0.7410
No log 7.4444 268 0.4845 0.75 0.4845 0.6961
No log 7.5 270 0.4236 0.7426 0.4236 0.6508
No log 7.5556 272 0.3973 0.6818 0.3973 0.6303
No log 7.6111 274 0.3949 0.6889 0.3949 0.6284
No log 7.6667 276 0.3996 0.72 0.3996 0.6321
No log 7.7222 278 0.4316 0.7279 0.4316 0.6570
No log 7.7778 280 0.5087 0.75 0.5087 0.7132
No log 7.8333 282 0.6017 0.75 0.6017 0.7757
No log 7.8889 284 0.6446 0.6957 0.6446 0.8029
No log 7.9444 286 0.6486 0.7445 0.6486 0.8054
No log 8.0 288 0.6030 0.7445 0.6030 0.7765
No log 8.0556 290 0.5665 0.7605 0.5665 0.7526
No log 8.1111 292 0.5152 0.75 0.5152 0.7178
No log 8.1667 294 0.4757 0.7279 0.4757 0.6897
No log 8.2222 296 0.4745 0.75 0.4745 0.6888
No log 8.2778 298 0.4885 0.75 0.4885 0.6989
No log 8.3333 300 0.5127 0.75 0.5127 0.7161
No log 8.3889 302 0.5248 0.75 0.5248 0.7244
No log 8.4444 304 0.5066 0.75 0.5066 0.7118
No log 8.5 306 0.4733 0.75 0.4733 0.6880
No log 8.5556 308 0.4621 0.75 0.4621 0.6798
No log 8.6111 310 0.4534 0.75 0.4534 0.6733
No log 8.6667 312 0.4487 0.7279 0.4487 0.6699
No log 8.7222 314 0.4341 0.7279 0.4341 0.6589
No log 8.7778 316 0.4286 0.7426 0.4286 0.6547
No log 8.8333 318 0.4222 0.7426 0.4222 0.6498
No log 8.8889 320 0.4262 0.7426 0.4262 0.6528
No log 8.9444 322 0.4392 0.7426 0.4392 0.6627
No log 9.0 324 0.4494 0.7426 0.4494 0.6703
No log 9.0556 326 0.4721 0.75 0.4721 0.6871
No log 9.1111 328 0.4929 0.75 0.4929 0.7021
No log 9.1667 330 0.5007 0.75 0.5007 0.7076
No log 9.2222 332 0.5006 0.75 0.5006 0.7075
No log 9.2778 334 0.4938 0.75 0.4938 0.7027
No log 9.3333 336 0.4826 0.75 0.4826 0.6947
No log 9.3889 338 0.4824 0.75 0.4824 0.6946
No log 9.4444 340 0.4837 0.75 0.4837 0.6955
No log 9.5 342 0.4808 0.75 0.4808 0.6934
No log 9.5556 344 0.4794 0.75 0.4794 0.6924
No log 9.6111 346 0.4730 0.75 0.4730 0.6878
No log 9.6667 348 0.4698 0.75 0.4698 0.6854
No log 9.7222 350 0.4652 0.75 0.4652 0.6821
No log 9.7778 352 0.4632 0.75 0.4632 0.6806
No log 9.8333 354 0.4635 0.75 0.4635 0.6808
No log 9.8889 356 0.4637 0.75 0.4637 0.6809
No log 9.9444 358 0.4626 0.75 0.4626 0.6801
No log 10.0 360 0.4618 0.75 0.4618 0.6796

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV0_k5_task1_organization_fold1

Finetuned
(702)
this model