Edit model card

arabert_augWithOrig_disEquV3_trial2_k1_organization_task1_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6381
  • Qwk: 0.5597
  • Mse: 0.6381
  • Rmse: 0.7988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0952 2 3.5620 0.0383 3.5620 1.8873
No log 0.1905 4 2.1414 -0.0328 2.1414 1.4633
No log 0.2857 6 1.4239 0.0950 1.4239 1.1933
No log 0.3810 8 1.2067 0.1642 1.2067 1.0985
No log 0.4762 10 1.3890 0.2967 1.3890 1.1786
No log 0.5714 12 1.1200 0.3636 1.1200 1.0583
No log 0.6667 14 0.8894 0.5305 0.8894 0.9431
No log 0.7619 16 1.0314 0.4615 1.0314 1.0156
No log 0.8571 18 1.2034 0.3621 1.2034 1.0970
No log 0.9524 20 1.3199 0.0488 1.3199 1.1489
No log 1.0476 22 1.2998 0.0742 1.2998 1.1401
No log 1.1429 24 1.4099 0.2597 1.4099 1.1874
No log 1.2381 26 1.6348 0.2075 1.6348 1.2786
No log 1.3333 28 1.6539 0.2075 1.6539 1.2861
No log 1.4286 30 1.5031 0.2770 1.5031 1.2260
No log 1.5238 32 1.2670 0.2125 1.2670 1.1256
No log 1.6190 34 1.1017 0.1582 1.1017 1.0496
No log 1.7143 36 1.0894 0.4147 1.0894 1.0437
No log 1.8095 38 0.9167 0.5645 0.9167 0.9575
No log 1.9048 40 0.7706 0.6114 0.7706 0.8778
No log 2.0 42 1.1007 0.3442 1.1007 1.0492
No log 2.0952 44 1.3200 0.3442 1.3200 1.1489
No log 2.1905 46 0.9539 0.4551 0.9539 0.9767
No log 2.2857 48 0.7490 0.5889 0.7490 0.8654
No log 2.3810 50 0.6485 0.5889 0.6485 0.8053
No log 2.4762 52 0.7661 0.6354 0.7661 0.8753
No log 2.5714 54 0.8951 0.5830 0.8951 0.9461
No log 2.6667 56 0.8161 0.6309 0.8161 0.9034
No log 2.7619 58 0.7685 0.6003 0.7685 0.8766
No log 2.8571 60 0.7816 0.5776 0.7816 0.8841
No log 2.9524 62 0.8347 0.4589 0.8347 0.9136
No log 3.0476 64 0.9381 0.3606 0.9381 0.9685
No log 3.1429 66 1.0136 0.3606 1.0136 1.0068
No log 3.2381 68 1.0577 0.2597 1.0577 1.0284
No log 3.3333 70 1.0268 0.3432 1.0268 1.0133
No log 3.4286 72 0.9890 0.3212 0.9890 0.9945
No log 3.5238 74 1.0124 0.3326 1.0124 1.0062
No log 3.6190 76 1.1183 0.5082 1.1183 1.0575
No log 3.7143 78 1.1699 0.4565 1.1699 1.0816
No log 3.8095 80 1.0783 0.4818 1.0783 1.0384
No log 3.9048 82 0.8635 0.6151 0.8635 0.9292
No log 4.0 84 0.7715 0.5482 0.7715 0.8784
No log 4.0952 86 0.7282 0.5455 0.7282 0.8533
No log 4.1905 88 0.7163 0.5431 0.7163 0.8464
No log 4.2857 90 0.7271 0.5566 0.7271 0.8527
No log 4.3810 92 0.7478 0.5858 0.7478 0.8648
No log 4.4762 94 0.7814 0.5858 0.7814 0.8839
No log 4.5714 96 0.8238 0.5858 0.8238 0.9076
No log 4.6667 98 0.8424 0.5858 0.8424 0.9178
No log 4.7619 100 0.8358 0.5858 0.8358 0.9142
No log 4.8571 102 0.8303 0.5721 0.8303 0.9112
No log 4.9524 104 0.8308 0.5721 0.8308 0.9115
No log 5.0476 106 0.8168 0.5721 0.8168 0.9038
No log 5.1429 108 0.8053 0.5721 0.8053 0.8974
No log 5.2381 110 0.8070 0.5858 0.8070 0.8983
No log 5.3333 112 0.8029 0.5597 0.8029 0.8961
No log 5.4286 114 0.8049 0.5614 0.8049 0.8972
No log 5.5238 116 0.8189 0.5748 0.8189 0.9049
No log 5.6190 118 0.8515 0.5858 0.8515 0.9228
No log 5.7143 120 0.9273 0.5248 0.9273 0.9630
No log 5.8095 122 0.9476 0.5248 0.9476 0.9735
No log 5.9048 124 0.9079 0.5241 0.9079 0.9528
No log 6.0 126 0.8459 0.5748 0.8459 0.9197
No log 6.0952 128 0.8130 0.5597 0.8130 0.9016
No log 6.1905 130 0.8220 0.6137 0.8220 0.9066
No log 6.2857 132 0.8469 0.6595 0.8469 0.9203
No log 6.3810 134 0.8489 0.6175 0.8489 0.9213
No log 6.4762 136 0.8116 0.5614 0.8116 0.9009
No log 6.5714 138 0.8082 0.5908 0.8082 0.8990
No log 6.6667 140 0.8055 0.5748 0.8055 0.8975
No log 6.7619 142 0.8167 0.5094 0.8167 0.9037
No log 6.8571 144 0.8036 0.5256 0.8036 0.8965
No log 6.9524 146 0.7899 0.5256 0.7899 0.8888
No log 7.0476 148 0.7522 0.5748 0.7522 0.8673
No log 7.1429 150 0.7261 0.5748 0.7261 0.8521
No log 7.2381 152 0.7112 0.5748 0.7112 0.8433
No log 7.3333 154 0.7023 0.5597 0.7023 0.8381
No log 7.4286 156 0.7131 0.5597 0.7131 0.8444
No log 7.5238 158 0.7404 0.6539 0.7404 0.8605
No log 7.6190 160 0.7438 0.6137 0.7438 0.8624
No log 7.7143 162 0.7368 0.6102 0.7368 0.8584
No log 7.8095 164 0.7285 0.6102 0.7285 0.8535
No log 7.9048 166 0.7237 0.5597 0.7237 0.8507
No log 8.0 168 0.7176 0.5431 0.7176 0.8471
No log 8.0952 170 0.7187 0.5431 0.7187 0.8477
No log 8.1905 172 0.7169 0.5431 0.7169 0.8467
No log 8.2857 174 0.7142 0.5597 0.7142 0.8451
No log 8.3810 176 0.7111 0.5597 0.7111 0.8433
No log 8.4762 178 0.7055 0.5597 0.7055 0.8399
No log 8.5714 180 0.6954 0.5597 0.6954 0.8339
No log 8.6667 182 0.6884 0.5908 0.6884 0.8297
No log 8.7619 184 0.6825 0.5908 0.6825 0.8262
No log 8.8571 186 0.6747 0.5908 0.6747 0.8214
No log 8.9524 188 0.6684 0.5908 0.6684 0.8175
No log 9.0476 190 0.6601 0.5748 0.6601 0.8125
No log 9.1429 192 0.6518 0.5748 0.6518 0.8074
No log 9.2381 194 0.6460 0.5748 0.6460 0.8037
No log 9.3333 196 0.6416 0.5748 0.6416 0.8010
No log 9.4286 198 0.6385 0.5748 0.6385 0.7991
No log 9.5238 200 0.6363 0.5908 0.6363 0.7977
No log 9.6190 202 0.6357 0.5908 0.6357 0.7973
No log 9.7143 204 0.6366 0.5597 0.6366 0.7979
No log 9.8095 206 0.6371 0.5597 0.6371 0.7982
No log 9.9048 208 0.6377 0.5597 0.6377 0.7986
No log 10.0 210 0.6381 0.5597 0.6381 0.7988

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/arabert_augWithOrig_disEquV3_trial2_k1_organization_task1_fold0

Finetuned
(702)
this model