Edit model card

arabert_augmented_only_k1_organization_task1_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2195
  • Qwk: 0.2338
  • Mse: 1.2195
  • Rmse: 1.1043

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.1818 2 5.1319 0.0120 5.1319 2.2654
No log 0.3636 4 2.8711 0.0834 2.8711 1.6944
No log 0.5455 6 1.6254 0.2921 1.6254 1.2749
No log 0.7273 8 1.4862 0.2292 1.4862 1.2191
No log 0.9091 10 1.3610 0.2380 1.3610 1.1666
No log 1.0909 12 1.0187 0.3383 1.0187 1.0093
No log 1.2727 14 0.9818 0.3383 0.9818 0.9908
No log 1.4545 16 0.9889 0.2687 0.9889 0.9945
No log 1.6364 18 1.1062 0.3173 1.1062 1.0518
No log 1.8182 20 1.3022 0.2463 1.3022 1.1411
No log 2.0 22 1.2435 0.2607 1.2435 1.1151
No log 2.1818 24 1.1962 0.2786 1.1962 1.0937
No log 2.3636 26 1.3167 0.1414 1.3167 1.1475
No log 2.5455 28 1.5147 0.1414 1.5147 1.2307
No log 2.7273 30 1.6231 0.2025 1.6231 1.2740
No log 2.9091 32 1.7717 0.0753 1.7717 1.3311
No log 3.0909 34 1.9347 -0.0328 1.9347 1.3909
No log 3.2727 36 1.9932 0.0106 1.9932 1.4118
No log 3.4545 38 1.9113 0.0533 1.9113 1.3825
No log 3.6364 40 1.6872 0.2198 1.6872 1.2989
No log 3.8182 42 1.5699 0.2075 1.5699 1.2529
No log 4.0 44 1.4360 0.2338 1.4360 1.1983
No log 4.1818 46 1.4985 0.1582 1.4985 1.2241
No log 4.3636 48 1.5642 0.0950 1.5642 1.2507
No log 4.5455 50 1.5495 0.0950 1.5495 1.2448
No log 4.7273 52 1.3760 0.1582 1.3760 1.1730
No log 4.9091 54 1.3113 0.2770 1.3113 1.1451
No log 5.0909 56 1.4035 0.2607 1.4035 1.1847
No log 5.2727 58 1.4266 0.2607 1.4266 1.1944
No log 5.4545 60 1.3690 0.3173 1.3690 1.1701
No log 5.6364 62 1.3720 0.3173 1.3720 1.1713
No log 5.8182 64 1.3692 0.3443 1.3692 1.1701
No log 6.0 66 1.4498 0.1876 1.4498 1.2041
No log 6.1818 68 1.4784 0.1876 1.4784 1.2159
No log 6.3636 70 1.4142 0.2006 1.4142 1.1892
No log 6.5455 72 1.3622 0.2597 1.3622 1.1671
No log 6.7273 74 1.3389 0.3443 1.3389 1.1571
No log 6.9091 76 1.3659 0.2380 1.3659 1.1687
No log 7.0909 78 1.4175 0.2380 1.4175 1.1906
No log 7.2727 80 1.4014 0.2380 1.4014 1.1838
No log 7.4545 82 1.3462 0.2380 1.3462 1.1603
No log 7.6364 84 1.2929 0.2770 1.2929 1.1371
No log 7.8182 86 1.2989 0.2597 1.2989 1.1397
No log 8.0 88 1.3861 0.2125 1.3861 1.1773
No log 8.1818 90 1.4672 0.2006 1.4672 1.2113
No log 8.3636 92 1.4616 0.2006 1.4616 1.2090
No log 8.5455 94 1.4006 0.2125 1.4006 1.1835
No log 8.7273 96 1.3339 0.2597 1.3339 1.1550
No log 8.9091 98 1.2928 0.2597 1.2928 1.1370
No log 9.0909 100 1.2647 0.2597 1.2647 1.1246
No log 9.2727 102 1.2438 0.2338 1.2438 1.1153
No log 9.4545 104 1.2326 0.2338 1.2326 1.1102
No log 9.6364 106 1.2267 0.2338 1.2267 1.1076
No log 9.8182 108 1.2221 0.2338 1.2221 1.1055
No log 10.0 110 1.2195 0.2338 1.2195 1.1043

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/arabert_augmented_only_k1_organization_task1_fold0

Finetuned
(700)
this model