|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- thaisum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5_thaisum_finetune |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: thaisum |
|
type: thaisum |
|
config: thaisum |
|
split: validation |
|
args: thaisum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.2022 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5_thaisum_finetune |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the thaisum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3039 |
|
- Rouge1: 0.2022 |
|
- Rouge2: 0.0808 |
|
- Rougel: 0.2023 |
|
- Rougelsum: 0.2019 |
|
- Gen Len: 18.9995 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.0742 | 1.0 | 5000 | 0.3272 | 0.1713 | 0.0551 | 0.1716 | 0.1714 | 18.9945 | |
|
| 1.7874 | 2.0 | 10000 | 0.3073 | 0.1943 | 0.0747 | 0.195 | 0.1941 | 18.997 | |
|
| 1.6341 | 3.0 | 15000 | 0.3035 | 0.2006 | 0.0807 | 0.2007 | 0.2002 | 19.0 | |
|
| 1.4501 | 4.0 | 20000 | 0.3039 | 0.2022 | 0.0808 | 0.2023 | 0.2019 | 18.9995 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|