|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- thaisum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5_thaisum_model |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: thaisum |
|
type: thaisum |
|
config: thaisum |
|
split: validation |
|
args: thaisum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.1432 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5_thaisum_model |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the thaisum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3540 |
|
- Rouge1: 0.1432 |
|
- Rouge2: 0.041 |
|
- Rougel: 0.1423 |
|
- Rougelsum: 0.142 |
|
- Gen Len: 18.933 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.4271 | 1.0 | 2500 | 0.3976 | 0.1306 | 0.0372 | 0.1302 | 0.1299 | 18.9665 | |
|
| 2.1992 | 2.0 | 5000 | 0.3720 | 0.1392 | 0.0376 | 0.1382 | 0.1384 | 18.922 | |
|
| 2.1687 | 3.0 | 7500 | 0.3599 | 0.1401 | 0.0391 | 0.1394 | 0.1389 | 18.9215 | |
|
| 2.1096 | 4.0 | 10000 | 0.3540 | 0.1432 | 0.041 | 0.1423 | 0.142 | 18.933 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|