Edit model card

Merge of top 7B models with DARE method

mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.

Eval

{
    "all": {
        "acc": 0.6547370286177235,
        "acc_stderr": 0.03204709242170183,
        "acc_norm": 0.6537337854798912,
        "acc_norm_stderr": 0.03272317883588649,
        "mc1": 0.5189718482252142,
        "mc1_stderr": 0.01749089640576236,
        "mc2": 0.6631825155680797,
        "mc2_stderr": 0.01527641053841743
    },
    "harness|arc:challenge|25": {
        "acc": 0.6953924914675768,
        "acc_stderr": 0.013449522109932485,
        "acc_norm": 0.7175767918088737,
        "acc_norm_stderr": 0.013155456884097225
    },
    "harness|hellaswag|10": {
        "acc": 0.7120095598486357,
        "acc_stderr": 0.004519011688417168,
        "acc_norm": 0.8820952001593309,
        "acc_norm_stderr": 0.003218362717491129
    },
    "harness|hendrycksTest-abstract_algebra|5": {
        "acc": 0.33,
        "acc_stderr": 0.047258156262526045,
        "acc_norm": 0.33,
        "acc_norm_stderr": 0.047258156262526045
    },
    "harness|hendrycksTest-anatomy|5": {
        "acc": 0.6296296296296297,
        "acc_stderr": 0.041716541613545426,
        "acc_norm": 0.6296296296296297,
        "acc_norm_stderr": 0.041716541613545426
    },
    "harness|hendrycksTest-astronomy|5": {
        "acc": 0.7105263157894737,
        "acc_stderr": 0.03690677986137283,
        "acc_norm": 0.7105263157894737,
        "acc_norm_stderr": 0.03690677986137283
    },
    "harness|hendrycksTest-business_ethics|5": {
        "acc": 0.64,
        "acc_stderr": 0.04824181513244218,
        "acc_norm": 0.64,
        "acc_norm_stderr": 0.04824181513244218
    },
    "harness|hendrycksTest-clinical_knowledge|5": {
        "acc": 0.7056603773584905,
        "acc_stderr": 0.02804918631569525,
        "acc_norm": 0.7056603773584905,
        "acc_norm_stderr": 0.02804918631569525
    },
    "harness|hendrycksTest-college_biology|5": {
        "acc": 0.7638888888888888,
        "acc_stderr": 0.03551446610810826,
        "acc_norm": 0.7638888888888888,
        "acc_norm_stderr": 0.03551446610810826
    },
    "harness|hendrycksTest-college_chemistry|5": {
        "acc": 0.48,
        "acc_stderr": 0.050211673156867795,
        "acc_norm": 0.48,
        "acc_norm_stderr": 0.050211673156867795
    },
    "harness|hendrycksTest-college_computer_science|5": {
        "acc": 0.54,
        "acc_stderr": 0.05009082659620333,
        "acc_norm": 0.54,
        "acc_norm_stderr": 0.05009082659620333
    },
    "harness|hendrycksTest-college_mathematics|5": {
        "acc": 0.31,
        "acc_stderr": 0.04648231987117316,
        "acc_norm": 0.31,
        "acc_norm_stderr": 0.04648231987117316
    },
    "harness|hendrycksTest-college_medicine|5": {
        "acc": 0.6705202312138728,
        "acc_stderr": 0.03583901754736411,
        "acc_norm": 0.6705202312138728,
        "acc_norm_stderr": 0.03583901754736411
    },
    "harness|hendrycksTest-college_physics|5": {
        "acc": 0.4215686274509804,
        "acc_stderr": 0.04913595201274498,
        "acc_norm": 0.4215686274509804,
        "acc_norm_stderr": 0.04913595201274498
    },
    "harness|hendrycksTest-computer_security|5": {
        "acc": 0.78,
        "acc_stderr": 0.04163331998932263,
        "acc_norm": 0.78,
        "acc_norm_stderr": 0.04163331998932263
    },
    "harness|hendrycksTest-conceptual_physics|5": {
        "acc": 0.5787234042553191,
        "acc_stderr": 0.03227834510146268,
        "acc_norm": 0.5787234042553191,
        "acc_norm_stderr": 0.03227834510146268
    },
    "harness|hendrycksTest-econometrics|5": {
        "acc": 0.5,
        "acc_stderr": 0.047036043419179864,
        "acc_norm": 0.5,
        "acc_norm_stderr": 0.047036043419179864
    },
    "harness|hendrycksTest-electrical_engineering|5": {
        "acc": 0.5586206896551724,
        "acc_stderr": 0.04137931034482758,
        "acc_norm": 0.5586206896551724,
        "acc_norm_stderr": 0.04137931034482758
    },
    "harness|hendrycksTest-elementary_mathematics|5": {
        "acc": 0.42857142857142855,
        "acc_stderr": 0.02548718714785938,
        "acc_norm": 0.42857142857142855,
        "acc_norm_stderr": 0.02548718714785938
    },
    "harness|hendrycksTest-formal_logic|5": {
        "acc": 0.47619047619047616,
        "acc_stderr": 0.04467062628403273,
        "acc_norm": 0.47619047619047616,
        "acc_norm_stderr": 0.04467062628403273
    },
    "harness|hendrycksTest-global_facts|5": {
        "acc": 0.33,
        "acc_stderr": 0.04725815626252604,
        "acc_norm": 0.33,
        "acc_norm_stderr": 0.04725815626252604
    },
    "harness|hendrycksTest-high_school_biology|5": {
        "acc": 0.7903225806451613,
        "acc_stderr": 0.023157879349083525,
        "acc_norm": 0.7903225806451613,
        "acc_norm_stderr": 0.023157879349083525
    },
    "harness|hendrycksTest-high_school_chemistry|5": {
        "acc": 0.4876847290640394,
        "acc_stderr": 0.035169204442208966,
        "acc_norm": 0.4876847290640394,
        "acc_norm_stderr": 0.035169204442208966
    },
    "harness|hendrycksTest-high_school_computer_science|5": {
        "acc": 0.68,
        "acc_stderr": 0.04688261722621505,
        "acc_norm": 0.68,
        "acc_norm_stderr": 0.04688261722621505
    },
    "harness|hendrycksTest-high_school_european_history|5": {
        "acc": 0.7878787878787878,
        "acc_stderr": 0.03192271569548301,
        "acc_norm": 0.7878787878787878,
        "acc_norm_stderr": 0.03192271569548301
    },
    "harness|hendrycksTest-high_school_geography|5": {
        "acc": 0.797979797979798,
        "acc_stderr": 0.02860620428922987,
        "acc_norm": 0.797979797979798,
        "acc_norm_stderr": 0.02860620428922987
    },
    "harness|hendrycksTest-high_school_government_and_politics|5": {
        "acc": 0.9015544041450777,
        "acc_stderr": 0.021500249576033456,
        "acc_norm": 0.9015544041450777,
        "acc_norm_stderr": 0.021500249576033456
    },
    "harness|hendrycksTest-high_school_macroeconomics|5": {
        "acc": 0.6666666666666666,
        "acc_stderr": 0.023901157979402538,
        "acc_norm": 0.6666666666666666,
        "acc_norm_stderr": 0.023901157979402538
    },
    "harness|hendrycksTest-high_school_mathematics|5": {
        "acc": 0.35185185185185186,
        "acc_stderr": 0.029116617606083008,
        "acc_norm": 0.35185185185185186,
        "acc_norm_stderr": 0.029116617606083008
    },
    "harness|hendrycksTest-high_school_microeconomics|5": {
        "acc": 0.6722689075630253,
        "acc_stderr": 0.03048991141767323,
        "acc_norm": 0.6722689075630253,
        "acc_norm_stderr": 0.03048991141767323
    },
    "harness|hendrycksTest-high_school_physics|5": {
        "acc": 0.36423841059602646,
        "acc_stderr": 0.03929111781242742,
        "acc_norm": 0.36423841059602646,
        "acc_norm_stderr": 0.03929111781242742
    },
    "harness|hendrycksTest-high_school_psychology|5": {
        "acc": 0.8440366972477065,
        "acc_stderr": 0.015555802713590167,
        "acc_norm": 0.8440366972477065,
        "acc_norm_stderr": 0.015555802713590167
    },
    "harness|hendrycksTest-high_school_statistics|5": {
        "acc": 0.5092592592592593,
        "acc_stderr": 0.034093869469927006,
        "acc_norm": 0.5092592592592593,
        "acc_norm_stderr": 0.034093869469927006
    },
    "harness|hendrycksTest-high_school_us_history|5": {
        "acc": 0.8333333333333334,
        "acc_stderr": 0.026156867523931045,
        "acc_norm": 0.8333333333333334,
        "acc_norm_stderr": 0.026156867523931045
    },
    "harness|hendrycksTest-high_school_world_history|5": {
        "acc": 0.7848101265822784,
        "acc_stderr": 0.02675082699467618,
        "acc_norm": 0.7848101265822784,
        "acc_norm_stderr": 0.02675082699467618
    },
    "harness|hendrycksTest-human_aging|5": {
        "acc": 0.6905829596412556,
        "acc_stderr": 0.03102441174057221,
        "acc_norm": 0.6905829596412556,
        "acc_norm_stderr": 0.03102441174057221
    },
    "harness|hendrycksTest-human_sexuality|5": {
        "acc": 0.7786259541984732,
        "acc_stderr": 0.03641297081313729,
        "acc_norm": 0.7786259541984732,
        "acc_norm_stderr": 0.03641297081313729
    },
    "harness|hendrycksTest-international_law|5": {
        "acc": 0.7933884297520661,
        "acc_stderr": 0.03695980128098824,
        "acc_norm": 0.7933884297520661,
        "acc_norm_stderr": 0.03695980128098824
    },
    "harness|hendrycksTest-jurisprudence|5": {
        "acc": 0.7870370370370371,
        "acc_stderr": 0.0395783547198098,
        "acc_norm": 0.7870370370370371,
        "acc_norm_stderr": 0.0395783547198098
    },
    "harness|hendrycksTest-logical_fallacies|5": {
        "acc": 0.7730061349693251,
        "acc_stderr": 0.03291099578615769,
        "acc_norm": 0.7730061349693251,
        "acc_norm_stderr": 0.03291099578615769
    },
    "harness|hendrycksTest-machine_learning|5": {
        "acc": 0.45535714285714285,
        "acc_stderr": 0.047268355537191,
        "acc_norm": 0.45535714285714285,
        "acc_norm_stderr": 0.047268355537191
    },
    "harness|hendrycksTest-management|5": {
        "acc": 0.7766990291262136,
        "acc_stderr": 0.04123553189891431,
        "acc_norm": 0.7766990291262136,
        "acc_norm_stderr": 0.04123553189891431
    },
    "harness|hendrycksTest-marketing|5": {
        "acc": 0.8760683760683761,
        "acc_stderr": 0.021586494001281376,
        "acc_norm": 0.8760683760683761,
        "acc_norm_stderr": 0.021586494001281376
    },
    "harness|hendrycksTest-medical_genetics|5": {
        "acc": 0.72,
        "acc_stderr": 0.045126085985421276,
        "acc_norm": 0.72,
        "acc_norm_stderr": 0.045126085985421276
    },
    "harness|hendrycksTest-miscellaneous|5": {
        "acc": 0.8275862068965517,
        "acc_stderr": 0.013507943909371798,
        "acc_norm": 0.8275862068965517,
        "acc_norm_stderr": 0.013507943909371798
    },
    "harness|hendrycksTest-moral_disputes|5": {
        "acc": 0.7427745664739884,
        "acc_stderr": 0.02353292543104429,
        "acc_norm": 0.7427745664739884,
        "acc_norm_stderr": 0.02353292543104429
    },
    "harness|hendrycksTest-moral_scenarios|5": {
        "acc": 0.4312849162011173,
        "acc_stderr": 0.016563829399047707,
        "acc_norm": 0.4312849162011173,
        "acc_norm_stderr": 0.016563829399047707
    },
    "harness|hendrycksTest-nutrition|5": {
        "acc": 0.7320261437908496,
        "acc_stderr": 0.025360603796242557,
        "acc_norm": 0.7320261437908496,
        "acc_norm_stderr": 0.025360603796242557
    },
    "harness|hendrycksTest-philosophy|5": {
        "acc": 0.7170418006430869,
        "acc_stderr": 0.02558306248998481,
        "acc_norm": 0.7170418006430869,
        "acc_norm_stderr": 0.02558306248998481
    },
    "harness|hendrycksTest-prehistory|5": {
        "acc": 0.7438271604938271,
        "acc_stderr": 0.024288533637726095,
        "acc_norm": 0.7438271604938271,
        "acc_norm_stderr": 0.024288533637726095
    },
    "harness|hendrycksTest-professional_accounting|5": {
        "acc": 0.46808510638297873,
        "acc_stderr": 0.029766675075873866,
        "acc_norm": 0.46808510638297873,
        "acc_norm_stderr": 0.029766675075873866
    },
    "harness|hendrycksTest-professional_law|5": {
        "acc": 0.4726205997392438,
        "acc_stderr": 0.012751075788015055,
        "acc_norm": 0.4726205997392438,
        "acc_norm_stderr": 0.012751075788015055
    },
    "harness|hendrycksTest-professional_medicine|5": {
        "acc": 0.6801470588235294,
        "acc_stderr": 0.02833295951403121,
        "acc_norm": 0.6801470588235294,
        "acc_norm_stderr": 0.02833295951403121
    },
    "harness|hendrycksTest-professional_psychology|5": {
        "acc": 0.6748366013071896,
        "acc_stderr": 0.018950886770806315,
        "acc_norm": 0.6748366013071896,
        "acc_norm_stderr": 0.018950886770806315
    },
    "harness|hendrycksTest-public_relations|5": {
        "acc": 0.6909090909090909,
        "acc_stderr": 0.044262946482000985,
        "acc_norm": 0.6909090909090909,
        "acc_norm_stderr": 0.044262946482000985
    },
    "harness|hendrycksTest-security_studies|5": {
        "acc": 0.7306122448979592,
        "acc_stderr": 0.02840125202902294,
        "acc_norm": 0.7306122448979592,
        "acc_norm_stderr": 0.02840125202902294
    },
    "harness|hendrycksTest-sociology|5": {
        "acc": 0.835820895522388,
        "acc_stderr": 0.026193923544454115,
        "acc_norm": 0.835820895522388,
        "acc_norm_stderr": 0.026193923544454115
    },
    "harness|hendrycksTest-us_foreign_policy|5": {
        "acc": 0.85,
        "acc_stderr": 0.03588702812826371,
        "acc_norm": 0.85,
        "acc_norm_stderr": 0.03588702812826371
    },
    "harness|hendrycksTest-virology|5": {
        "acc": 0.5602409638554217,
        "acc_stderr": 0.03864139923699122,
        "acc_norm": 0.5602409638554217,
        "acc_norm_stderr": 0.03864139923699122
    },
    "harness|hendrycksTest-world_religions|5": {
        "acc": 0.8362573099415205,
        "acc_stderr": 0.028380919596145866,
        "acc_norm": 0.8362573099415205,
        "acc_norm_stderr": 0.028380919596145866
    },
    "harness|truthfulqa:mc|0": {
        "mc1": 0.5189718482252142,
        "mc1_stderr": 0.01749089640576236,
        "mc2": 0.6631825155680797,
        "mc2_stderr": 0.01527641053841743
    },
    "harness|winogrande|5": {
        "acc": 0.8437253354380426,
        "acc_stderr": 0.01020535179187352
    },
    "harness|gsm8k|5": {
        "acc": 0.7172100075815011,
        "acc_stderr": 0.012405020417873619
    }
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.54
AI2 Reasoning Challenge (25-Shot) 71.76
HellaSwag (10-Shot) 88.21
MMLU (5-Shot) 64.86
TruthfulQA (0-shot) 66.32
Winogrande (5-shot) 84.37
GSM8k (5-shot) 71.72
Downloads last month
78
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1

Quantizations
1 model

Collection including MaziyarPanahi/TheTop-5x7B-Instruct-D-v0.1

Evaluation results